Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
2.
Crit Rev Oncol Hematol ; 144: 102814, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31593878

RESUMO

The prognosis for many patients with acute myeloid leukemia (AML) is poor, mainly due to disease relapse driven by leukemia stem cells (LSCs). Recent studies have highlighted the unique metabolic properties of LSCs, which might represent opportunities for LSC-selective targeting. LSCs characteristically have low levels of reactive oxygen species (ROS), which apparently result from a combination of low mitochondrial activity and high activity of ROS-removing pathways such as autophagy. Due to this low activity, LSCs are highly dependent on mitochondrial regulatory mechanisms. These include the anti-apoptotic protein BCL-2, which also has crucial roles in regulating the mitochondrial membrane potential, and proteins involved in mitophagy. Here we review the different pathways that impact mitochondrial activity and redox-regulation, and highlight their relevance for the functionality of both HSCs and LSCs. Additionally, novel AML therapy strategies that are based on interference with those pathways, including the promising BCL-2 inhibitor Venetoclax, are summarized.


Assuntos
Leucemia Mieloide Aguda , Dinâmica Mitocondrial , Células-Tronco Hematopoéticas , Humanos , Células-Tronco Neoplásicas , Oxirredução
3.
Exp Hematol ; 73: 38-49.e7, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30986495

RESUMO

Reduced expression of the transcription factor PU.1 is frequently associated with development of acute myeloid leukemia (AML), whereas elevated levels of CITED2 (CBP/p300-interacting-transactivator-with-an-ED-rich-tail 2) enhance maintenance of both normal and leukemic hematopoietic stem and progenitor cells (HSPCs). Recent findings indicate that PU.1 and CITED2 act in the same gene regulatory network. We therefore examined a potential synergistic effect of simultaneous PU.1 downregulation and CITED2 upregulation on stem cell biology and AML pathogenesis. We found that simultaneous PU.1/CITED2 deregulation in human CD34+ cord blood (CB) cells, as well as CITED2 upregulation in preleukemic murine PU.1-knockdown (PU.1KD/KD) bone marrow cells, significantly increased the maintenance of HSPCs compared with the respective deregulation of either factor alone. Increased replating capacity of PU.1KD/KD/CITED2 cells in in vitro assays eventually resulted in outgrowth of transformed cells, while upregulation of CITED2 in PU.1KD/KD cells enhanced their engraftment in in vivo transplantation studies without affecting leukemic transformation. Transcriptional analysis of CD34+ CB cells with combined PU.1/CITED2 alterations revealed a set of differentially expressed genes that highly correlated with gene signatures found in various AML subtypes. These findings illustrate that combined PU.1/CITED2 deregulation induces a transcriptional program that promotes HSPC maintenance, which might be a prerequisite for malignant transformation.


Assuntos
Transformação Celular Neoplásica/metabolismo , Regulação Leucêmica da Expressão Gênica , Células-Tronco Hematopoéticas/metabolismo , Leucemia Mieloide Aguda/metabolismo , Proteínas de Neoplasias/biossíntese , Proteínas Proto-Oncogênicas/biossíntese , Proteínas Repressoras/biossíntese , Transativadores/biossíntese , Adulto , Animais , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/patologia , Feminino , Células-Tronco Hematopoéticas/patologia , Humanos , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patologia , Camundongos , Camundongos Knockout , Proteínas de Neoplasias/genética , Proteínas Proto-Oncogênicas/genética , Proteínas Repressoras/genética , Transativadores/genética
4.
Cell Death Dis ; 8(10): e3132, 2017 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-29072699

RESUMO

CITED2 (CBP/p300-interacting-transactivator-with-an-ED-rich-tail 2) is a regulator of the acetyltransferase CBP/p300 and elevated CITED2 levels are shown in a number of acute myeloid leukemia (AML). To study the in vivo role of CITED2 in AML maintenance, AML cells were transduced with a lentiviral construct for RNAi-mediated knockdown of CITED2. Mice transplanted with CITED2-knockdown AML cells (n=4) had a significantly longer survival compared to mice transplanted with control AML cells (P<0.02). In vitro, the reduction of CITED2 resulted in increased p53-mediated apoptosis and CDKN1A expression, whereas BCL2 levels were reduced. The activation of p53 upon CITED2 knockdown is not a direct consequence of increased CBP/p300-activity towards p53, since no increased formation of CBP/p300/p53 complexes was demonstrated and inhibition of CBP/p300-activity could not rescue the phenotype of CITED2-deficient cells. Instead, loss of CITED2 had an inhibitory effect on the AKT-signaling pathway, which was indicated by decreased levels of phosphorylated AKT and altered expression of the AKT-pathway regulators PHLDA3 and SOX4. Notably, simultaneous upregulation of BCL2 or downregulation of the p53-target gene PHLDA3 rescued the apoptotic phenotype in CITED2-knockdown cells. Furthermore, knockdown of CITED2 led to a decreased interaction of p53 with its inhibitor MDM2, which results in increased amounts of total p53 protein. In summary, our data indicate that CITED2 functions in pathways regulating p53 activity and therefore represents an interesting target for AML therapy, since de novo AML cases are characterized by an inactivation of the p53 pathway or deregulation of apoptosis-related genes.


Assuntos
Leucemia Mieloide Aguda/metabolismo , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Transativadores/genética , Transativadores/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Animais , Apoptose/fisiologia , Linhagem Celular Tumoral , Sobrevivência Celular/fisiologia , Feminino , Humanos , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patologia , Camundongos , Camundongos Endogâmicos NOD , Proteína Supressora de Tumor p53/genética
5.
EMBO J ; 32(24): 3176-91, 2013 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-24240174

RESUMO

The histone deacetylases HDAC1 and HDAC2 remove acetyl moieties from lysine residues of histones and other proteins and are important regulators of gene expression. By deleting different combinations of Hdac1 and Hdac2 alleles in the epidermis, we reveal a dosage-dependent effect of HDAC1/HDAC2 activity on epidermal proliferation and differentiation. Conditional ablation of either HDAC1 or HDAC2 in the epidermis leads to no obvious phenotype due to compensation by the upregulated paralogue. Strikingly, deletion of a single Hdac2 allele in HDAC1 knockout mice results in severe epidermal defects, including alopecia, hyperkeratosis, hyperproliferation and spontaneous tumour formation. These mice display impaired Sin3A co-repressor complex function, increased levels of c-Myc protein, p53 expression and apoptosis in hair follicles (HFs) and misregulation of HF bulge stem cells. Surprisingly, ablation of HDAC1 but not HDAC2 in a skin tumour model leads to accelerated tumour development. Our data reveal a crucial function of HDAC1/HDAC2 in the control of lineage specificity and a novel role of HDAC1 as a tumour suppressor in the epidermis.


Assuntos
Epiderme/crescimento & desenvolvimento , Histona Desacetilase 1/metabolismo , Histona Desacetilase 2/metabolismo , Neoplasias Cutâneas/genética , Alopecia/genética , Animais , Apoptose/genética , Linhagem da Célula , Proteínas Correpressoras , Modelos Animais de Doenças , Epiderme/enzimologia , Epiderme/patologia , Regulação da Expressão Gênica , Genes Supressores de Tumor , Genes p53 , Folículo Piloso/patologia , Histona Desacetilase 1/genética , Histona Desacetilase 2/genética , Ceratose/genética , Ceratose/patologia , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Proteínas Proto-Oncogênicas c-myc/genética , Proteínas Proto-Oncogênicas c-myc/metabolismo , Neoplasias Cutâneas/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA