Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 102
Filtrar
1.
Sci Signal ; 17(851): eadn8727, 2024 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-39190708

RESUMO

Establishing a nonproductive, quiescent infection within monocytes is essential for the spread of human cytomegalovirus (HCMV). We investigated the mechanisms through which HCMV establishes a quiescent infection in monocytes. US28 is a virally encoded G protein-coupled receptor (GPCR) that is essential for silent infections within cells of the myeloid lineage. We found that preformed US28 was rapidly delivered to monocytes by HCMV viral particles, whereas the de novo synthesis of US28 was delayed for several days. A recombinant mutant virus lacking US28 (US28Δ) was unable to establish a quiescent infection, resulting in a fully productive lytic infection able to produce progeny virus. Infection with US28Δ HCMV resulted in the phosphorylation of the serine and threonine kinase Akt at Ser473 and Thr308, in contrast with the phosphorylation of Akt only at Ser473 after WT viral infection. Inhibiting the dual phosphorylation of Akt prevented the lytic replication of US28Δ, and ectopic expression of a constitutively phosphorylated Akt variant triggered lytic replication of wild-type HCMV. Mechanistically, we found that US28 was necessary and sufficient to attenuate epidermal growth factor receptor (EGFR) signaling induced during the entry of WT virus, which led to the site-specific phosphorylation of Akt at Ser473. Thus, particle-delivered US28 fine-tunes Akt activity by limiting HCMV-induced EGFR activation during viral entry, enabling quiescent infection in monocytes.


Assuntos
Citomegalovirus , Receptores ErbB , Monócitos , Proteínas Proto-Oncogênicas c-akt , Proteínas Virais , Replicação Viral , Citomegalovirus/fisiologia , Citomegalovirus/genética , Citomegalovirus/metabolismo , Humanos , Monócitos/virologia , Monócitos/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Fosforilação , Proteínas Virais/metabolismo , Proteínas Virais/genética , Receptores ErbB/metabolismo , Receptores ErbB/genética , Vírion/metabolismo , Vírion/genética , Receptores de Quimiocinas/metabolismo , Receptores de Quimiocinas/genética , Infecções por Citomegalovirus/metabolismo , Infecções por Citomegalovirus/virologia , Infecções por Citomegalovirus/genética , Transdução de Sinais
2.
Heliyon ; 10(9): e30207, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38737275

RESUMO

P-glycoprotein (P-gp) and Breast Cancer Resistance Protein (BCRP) multidrug resistance (MDR) transporters are localized at the luminal surface of the blood-brain barrier (BBB). They confer fetal brain protection against harmful compounds that may be circulating in the peripheral blood. The fetus develops in low oxygen levels; however, some obstetric pathologies such as pre-eclampsia, placenta accreta/previa may result in even greater fetal hypoxic states. We investigated how hypoxia impacts MDR transporters in human fetal brain endothelial cells (hfBECs) derived from early and mid-stages of pregnancy. Hypoxia decreased BCRP protein and activity in hfBECs derived in early pregnancy. In contrast, in hfBECs derived in mid-pregnancy there was an increase in P-gp and BCRP activity following hypoxia. Results suggest a hypoxia-induced reduction in fetal brain protection in early pregnancy, but a potential increase in transporter-mediated protection at the BBB during mid-gestation. This would modify accumulation of various key physiological and pharmacological substrates of P-gp and BCRP in the developing fetal brain and potentially contribute to the pathogenesis of neurodevelopmental disorders commonly associated with in utero hypoxia.

3.
Proc Natl Acad Sci U S A ; 121(10): e2315860121, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38408244

RESUMO

Human cytomegalovirus (HCMV) is a prevalent pathogen that establishes life-long latent infection in hematopoietic cells. While this infection is usually asymptomatic, immune dysregulation leads to viral reactivation, which can cause significant morbidity and mortality. However, the mechanisms underpinning reactivation remain incompletely understood. The HCMV major immediate early promoter (MIEP)/enhancer is a key factor in this process, as its transactivation from a repressed to active state helps drive viral gene transcription necessary for reactivation from latency. Numerous host transcription factors bind the MIE locus and recruit repressive chromatin modifiers, thus impeding virus reactivation. One such factor is CCCTC-binding protein (CTCF), a highly conserved host zinc finger protein that mediates chromatin conformation and nuclear architecture. However, the mechanisms by which CTCF contributes to HCMV latency were previously unexplored. Here, we confirm that CTCF binds two convergent sites within the MIE locus during latency in primary CD14+ monocytes, and following cellular differentiation, CTCF association is lost as the virus reactivates. While mutation of the MIE enhancer CTCF binding site does not impact viral lytic growth in fibroblasts, this mutant virus fails to maintain latency in myeloid cells. Furthermore, we show the two convergent CTCF binding sites allow looping to occur across the MIEP, supporting transcriptional repression during latency. Indeed, looping between the two sites diminishes during virus reactivation, concurrent with activation of MIE transcription. Taken together, our data reveal that three-dimensional chromatin looping aids in the regulation of HCMV latency and provides insight into promoter/enhancer regulation that may prove broadly applicable across biological systems.


Assuntos
Infecções por Citomegalovirus , Citomegalovirus , Humanos , Cromatina/genética , Citomegalovirus/genética , Infecções por Citomegalovirus/genética , Regulação Viral da Expressão Gênica , Regiões Promotoras Genéticas , Ativação Viral/genética , Latência Viral/genética
4.
Am J Perinatol ; 2023 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-37935374

RESUMO

OBJECTIVE: Animal literature has suggested that the impact of antenatal corticosteroids (ACS) may vary by infant sex. Our objective was to assess the impact of infant sex on the use of multiple courses versus a single course of ACS and perinatal outcomes. STUDY DESIGN: We conducted a secondary analysis of the Multiple Courses of Antenatal Corticosteroids for Preterm Birth trial, which randomly allocated pregnant people to multiple courses versus a single course of ACS. Our primary outcome was a composite of perinatal mortality or clinically significant neonatal morbidity (including neonatal death, stillbirth, severe respiratory distress syndrome, intraventricular hemorrhage [grade III or IV], cystic periventricular leukomalacia, and necrotizing enterocolitis [stage II or III]). Secondary outcomes included individual components of the primary outcome as well as anthropometric measures. Baseline characteristics were compared between participants who received multiple courses versus a single course of ACS. An interaction between exposure to ACS and infant sex was assessed for significance and multivariable regression analyses were conducted with adjustment for predefined covariates, when feasible. RESULTS: Data on 2,300 infants were analyzed. The interaction term between treatment status (multiple courses vs. a single course of ACS) and infant sex was not significant for the primary outcome (p = 0.86), nor for any of the secondary outcomes (p > 0.05). CONCLUSION: Infant sex did not modify the association between exposure to ACS and perinatal outcomes including perinatal mortality or neonatal morbidity or anthropometric outcomes. However, animal literature indicates that sex-specific differences after exposure to ACS may emerge over time and thus investigating long-term sex-specific outcomes warrants further attention. KEY POINTS: · We explored the impact of infant sex on perinatal outcomes after multiple versus a single course of ACS.. · Infant sex was not a significant effect modifier of ACS exposure and perinatal outcomes.. · Animal literature indicates that sex-specific differences after ACS exposure may emerge over time.. · Further investigation of long-term sex-specific outcomes is warranted..

5.
Transl Behav Med ; 2023 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-37874681

RESUMO

The long-term economic viability of modern health care systems is uncertain, in part due to costs of health care at the end of life and increasing health care utilization associated with an increasing population prevalence of multiple chronic diseases. Control of health care spending and sustaining delivery of health care services will require strategic investments in prevention to reduce the risk of disease and its complications over an individual's life course. Behavior change interventions aimed at reducing a range of harmful and risky health-related behaviors including smoking, physical inactivity, excess alcohol consumption, and excess weight, are one approach that has proven effective at reducing risk and preventing chronic disease. However, large-scale efforts to reduce population-level chronic diseases are challenging and have not been very successful at reducing the burden of chronic diseases. A new approach is required to identify when, where, and how to intervene to disrupt patterns of behavior associated with high-risk factors using context-specific interventions that can be scaled. This paper introduces the need to integrate theoretical and methodological principles of health geography and behavioral economics as opportunities to strengthen behavior change interventions for the prevention of chronic diseases. We discuss how health geography and behavioral economics can be applied to expand existing behavior change frameworks and how behavior change interventions can be strengthened by characterizing contexts of time and activity space.


Behavior change interventions are challenged by lack of information about the contexts influencing decisions patients make as part of their daily routine such as when, where, and how health behaviors occur. A new approach is required to strengthen behavior change interventions by integrating contexts of time and activity space so that strategies can be scaled across populations to influence how individuals make decisions about improving their health behaviors. Incorporating ideas from health geography and behavioral economics into the design of behavior change interventions provides an opportunity to collect and investigate individual-level health information characterizing contexts of individuals' activities across space, connections to place, time management, and patterns in behavior over time. By visualizing and characterizing key spatiotemporal contexts about an individual's day-to-day routine, insight can be gained about where and for how long activities occur and what opportunities exist for adapting day-to-day routines. This paper will discuss how theory from health geography could be applied to understand contexts influencing behaviors and how spatiotemporal information could be applied for the purpose of tailoring behavioral economic strategies to strengthen the design of behavior change interventions.

6.
AJOG Glob Rep ; 3(3): 100222, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37645642

RESUMO

OBJECTIVE: This study evaluated the correlation between maternal hepcidin and other biomarkers of iron status, markers of inflammation, and maternal body weight during pregnancy, as well as neurodevelopment in the offspring. DATA SOURCES: PubMed, Web of Science, Scopus, and Embase were searched from inception until March 2022. STUDY ELIGIBILITY CRITERIA: Studies conducted among pregnant women without apparent pregnancy complications were included. Eligible studies reported correlation coefficients between maternal hepcidin and any outcomes of maternal biomarkers of iron status or inflammatory load during pregnancy, prenatal maternal body weight, and offspring neurodevelopment. Studies without correlation data were eligible if they quantitatively reported volumes of both maternal hepcidin and any marker of iron status and/or inflammatory load during gestation. METHODS: Pooled correlation coefficients between maternal hepcidin and outcomes of interest were calculated using the Fisher r-to-Z transformation. Both fixed-effects and DerSimonian and Laird random-effects models were used to calculate pooled correlation coefficient. When meta-analysis was not feasible, results were descriptively synthesized. RESULTS: Forty-six studies with 6624 participants were eligible. Hepcidin was significantly correlated with hemoglobin in the third trimester (r=0.21; 95% confidence interval, 0.1-0.32); ferritin in the first (r=0.31; 95% confidence interval, 0.01-0.61) and third trimester (r=0.35; 95% confidence interval, 0.23-0.48); soluble transferrin receptor in the second trimester (r=-0.27; 95% confidence interval, -0.4 to -0.14); total iron-binding capacity in the second trimester (r=0.37; 95% confidence interval, 0.24-0.50); and serum iron in the third trimester (r=0.11; 95% confidence interval, 0.02-0.19). Hepcidin was significantly correlated with the inflammatory marker interleukin-6 in the third trimester (r=0.26; 95% confidence interval, 0.17-0.34) and C-reactive protein in the second (r=0.16; 95% confidence interval, 0.03-0.30) and third trimester (r=0.28; 95% confidence interval, 0.04-0.52). Four out of 5 studies reported weak-to-moderate positive correlation between hepcidin and body mass index. Hepcidin levels varied across body mass index categories. No single study reported the relationship between maternal hepcidin and neurodevelopment in offspring. CONCLUSION: Hepcidin weakly to moderately correlates with biomarkers of iron and inflammation in pregnancy.

7.
mBio ; 14(4): e0032623, 2023 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-37439556

RESUMO

Human cytomegalovirus (HCMV) is a betaherpesvirus that establishes lifelong infection in its host and can cause severe comorbidities in individuals with suppressed or compromised immune systems. The lifecycle of HCMV consists of lytic and latent phases, largely dependent upon the cell type infected and whether transcription from the major immediate early locus can ensue. Control of this locus, which acts as a critical "switch" region from where the lytic gene expression cascade originates, as well as regulation of the additional ~235 kilobases of virus genome, occurs through chromatinization with cellular histone proteins after infection. Upon infection of a host cell, an initial intrinsic antiviral response represses gene expression from the incoming genome, which is relieved in permissive cells by viral and host factors in concert. Latency is established in a subset of hematopoietic cells, during which viral transcription is largely repressed while the genome is maintained. As these latently infected cells differentiate, the cellular milieu and epigenetic modifications change, giving rise to the initial stages of virus reactivation from latency. Thus, throughout the cycle of infection, chromatinization, chromatin modifiers, and the recruitment of specific transcription factors influence the expression of genes from the HCMV genome. In this review, we discuss epigenetic regulation of the HCMV genome during the different phases of infection, with an emphasis on recent reports that add to our current perspective.


Assuntos
Cromatina , Infecções por Citomegalovirus , Humanos , Epigênese Genética , Latência Viral/genética , Histonas/metabolismo , Citomegalovirus/fisiologia , Regulação Viral da Expressão Gênica
8.
Elife ; 122023 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-37014051

RESUMO

The phylum of Apicomplexa groups intracellular parasites that employ substrate-dependent gliding motility to invade host cells, egress from the infected cells, and cross biological barriers. The glideosome-associated connector (GAC) is a conserved protein essential to this process. GAC facilitates the association of actin filaments with surface transmembrane adhesins and the efficient transmission of the force generated by myosin translocation of actin to the cell surface substrate. Here, we present the crystal structure of Toxoplasma gondii GAC and reveal a unique, supercoiled armadillo repeat region that adopts a closed ring conformation. Characterisation of the solution properties together with membrane and F-actin binding interfaces suggests that GAC adopts several conformations from closed to open and extended. A multi-conformational model for assembly and regulation of GAC within the glideosome is proposed.


Assuntos
Toxoplasma , Toxoplasma/metabolismo , Actinas/metabolismo , Citoesqueleto de Actina/metabolismo , Membrana Celular/metabolismo , Miosinas/metabolismo , Proteínas de Protozoários/metabolismo
9.
Fluids Barriers CNS ; 20(1): 8, 2023 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-36721242

RESUMO

BACKGROUND: The multidrug resistance (MDR) transporters, P-glycoprotein (P-gp, encoded by ABCB1) and breast cancer resistance protein (BCRP/ABCG2) contribute to the blood-brain barrier (BBB), protecting the brain from drug exposure. The impact of infection on MDR in the developing human BBB remains to be determined. We hypothesized that exposure to bacterial and viral pathogen-associated molecular patterns (PAMPs) modify MDR expression and activity in human fetal brain endothelial cells (hfBECs) isolated from early and mid-gestation brain microvessels. METHODS: We modelled infection (4 h and 24 h) using the bacterial PAMP, lipopolysaccharide (LPS; a toll-like receptor [TLR]-4 ligand) or the viral PAMPs, polyinosinic polycytidylic acid (Poly I:C; TLR-3 ligand) and single-stranded RNA (ssRNA; TLR-7/8 ligand). mRNA expression was assessed by qPCR, whereas protein expression was assessed by Western blot or immunofluorescence. P-gp and BCRP activity was evaluated by Calcein-AM and Chlorin-6 assays. RESULTS: TLRs-3,4 and 8 were expressed by the isolated hfBECs. Infection mimics induced specific pro-inflammatory responses as well as changes in P-gp/ABCB1 or BCRP/ABCG2 expression (P < 0.05). LPS and ssRNA significantly decreased P-gp activity at 4 and 24 h in early and mid-gestation (P < 0.03-P < 0.001), but significantly increased BCRP activity in hfBECs in a dose-dependent pattern (P < 0.05-P < 0.002). In contrast, Poly-IC significantly decreased P-gp activity after 4 h in early (P < 0.01) and mid gestation (P < 0.04), but not 24 h, and had no overall effect on BCRP activity, though BCRP activity was increased with the highest dose at 24 h in mid-gestation (P < 0.05). CONCLUSIONS: Infectious PAMPs significantly modify the expression and function of MDR transporters in hfBECs, though effects are PAMP-, time- and dose-specific. In conclusion, bacterial and viral infections during pregnancy likely have profound effects on exposure of the fetal brain to physiological and pharmacological substrates of P-gp and BCRP, potentially leading to altered trajectories of fetal brain development.


Assuntos
Barreira Hematoencefálica , Células Endoteliais , Feminino , Gravidez , Humanos , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP , Moléculas com Motivos Associados a Patógenos , Ligantes , Lipopolissacarídeos , Proteínas de Neoplasias , Encéfalo , Proteínas de Membrana Transportadoras , Resistência a Múltiplos Medicamentos
10.
Sci Adv ; 8(43): eadd1168, 2022 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-36288299

RESUMO

Cytomegalovirus (CMV) reactivation from latency following immune dysregulation remains a serious risk for patients, often causing substantial morbidity and mortality. Here, we demonstrate the CMV-encoded G protein-coupled receptor, US28, in coordination with cellular Ephrin receptor A2, attenuates mitogen-activated protein kinase signaling, thereby limiting viral replication in latently infected primary monocytes. Furthermore, treatment of latently infected primary monocytes with dasatinib, a Food and Drug Association-approved kinase inhibitor used to treat a subset of leukemias, results in CMV reactivation. These ex vivo data correlate with our retrospective analyses of the Explorys electronic health record database, where we find dasatinib treatment is associated with a significant risk of CMV-associated disease (odds ratio 1.58, P = 0.0004). Collectively, our findings elucidate a signaling pathway that plays a central role in the balance between CMV latency and reactivation and identifies a common therapeutic cancer treatment that elevates the risk of CMV-associated disease.

11.
Cell Rep ; 40(5): 111168, 2022 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-35926457

RESUMO

An essential first step in the post-translational modification of proteins with UFM1, UFMylation, is the proteolytic cleavage of pro-UFM1 to expose a C-terminal glycine. Of the two UFM1-specific proteases (UFSPs) identified in humans, only UFSP2 is reported to be active, since the annotated sequence of UFSP1 lacks critical catalytic residues. Nonetheless, efficient UFM1 maturation occurs in cells lacking UFSP2, suggesting the presence of another active protease. We herein identify UFSP1 translated from a non-canonical start site to be this protease. Cells lacking both UFSPs show complete loss of UFMylation resulting from an absence of mature UFM1. While UFSP2, but not UFSP1, removes UFM1 from the ribosomal subunit RPL26, UFSP1 acts earlier in the pathway to mature UFM1 and cleave a potential autoinhibitory modification on UFC1, thereby controlling activation of UFMylation. In summary, our studies reveal important distinctions in substrate specificity and localization-dependent functions for the two proteases in regulating UFMylation.


Assuntos
Peptídeo Hidrolases , Processamento de Proteína Pós-Traducional , Humanos , Cisteína Endopeptidases/metabolismo , Peptídeo Hidrolases/metabolismo , Proteínas/metabolismo , Proteínas Ribossômicas/metabolismo , Especificidade por Substrato
12.
Cells ; 11(14)2022 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-35883702

RESUMO

There is little information about the functional expression of the multidrug resistance (MDR) transporters P-glycoprotein (P-gp, encoded by ABCB1) and breast cancer resistance protein (BCRP/ABCG2) in the developing blood−brain barrier (BBB). We isolated and cultured primary human fetal brain endothelial cells (hfBECs) from early and mid-gestation brains and assessed P-gp/ABCB1 and BCRP/ABCG2 expression and function, as well as tube formation capability. Immunolocalization of the von Willebrand factor (marker of endothelial cells), zonula occludens-1 and claudin-5 (tight junctions) was detected in early and mid-gestation-derived hfBECs, which also formed capillary-like tube structures, confirming their BEC phenotype. P-gp and BCRP immunostaining was detected in capillary-like tubes and in the cytoplasm and nucleus of hfBECs. P-gp protein levels in the plasma membrane and nuclear protein fractions, as well as P-gp protein/ABCB1 mRNA and BCRP protein levels decreased (p < 0.05) in hfBECs, from early to mid-gestation. No differences in P-gp or BCRP activity in hfBECs were observed between the two age groups. The hfBECs from early and mid-gestation express functionally competent P-gp and BCRP drug transporters and may thus contribute to the BBB protective phenotype in the conceptus from early stages of pregnancy.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP , Transportadores de Cassetes de Ligação de ATP , Subfamília B de Transportador de Cassetes de Ligação de ATP , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/genética , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/genética , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Transportadores de Cassetes de Ligação de ATP/metabolismo , Encéfalo/metabolismo , Resistência a Múltiplos Medicamentos , Células Endoteliais/metabolismo , Feminino , Humanos , Proteínas de Neoplasias/metabolismo , Gravidez
13.
Cell Mol Life Sci ; 79(8): 415, 2022 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-35821142

RESUMO

The blood-brain barrier (BBB) provides essential neuroprotection from environmental toxins and xenobiotics, through high expression of drug efflux transporters in endothelial cells of the cerebral capillaries. However, xenobiotic exposure, stress, and inflammatory stimuli have the potential to disrupt BBB permeability in fetal and post-natal life. Understanding the role and ability of the BBB in protecting the developing brain, particularly with respect to drug/toxin transport, is key to promoting long-term brain health. Drug transporters, particularly P-gp and BCRP are expressed in early gestation at the developing BBB and have a crucial role in developmental homeostasis and fetal brain protection. We have highlighted several factors that modulate drug transporters at the developing BBB, including synthetic glucocorticoid (sGC), cytokines, maternal infection, and growth factors. Some factors have the potential to increase expression and function of drug transporters and increase brain protection (e.g., sGC, transforming growth factor [TGF]-ß). However, others inhibit drug transporters expression and function at the BBB, increasing brain exposure to xenobiotics (e.g., tumor necrosis factor [TNF], interleukin [IL]-6), negatively impacting brain development. This has implications for pregnant women and neonates, who represent a vulnerable population and may be exposed to drugs and environmental toxins, many of which are P-gp and BCRP substrates. Thus, alterations in regulated transport across the developing BBB may induce long-term changes in brain health and compromise pregnancy outcome. Furthermore, a large portion of neonatal adverse drug reactions are attributed to agents that target or access the nervous system, such as stimulants (e.g., caffeine), anesthetics (e.g., midazolam), analgesics (e.g., morphine) and antiretrovirals (e.g., Zidovudine); thus, understanding brain protection is key for the development of strategies to protect the fetal and neonatal brain.


Assuntos
Transportadores de Cassetes de Ligação de ATP , Barreira Hematoencefálica , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/genética , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Transportadores de Cassetes de Ligação de ATP/metabolismo , Trifosfato de Adenosina/metabolismo , Barreira Hematoencefálica/metabolismo , Encéfalo/metabolismo , Células Endoteliais/metabolismo , Feminino , Humanos , Recém-Nascido , Interleucina-6/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Proteínas de Neoplasias/metabolismo , Gravidez , Xenobióticos/metabolismo
14.
PLoS One ; 17(5): e0267946, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35500004

RESUMO

Maternal obesity is an important risk factor for childhood obesity and influences the prevalence of metabolic diseases in offspring. As childhood obesity is influenced by postnatal factors, it is critical to determine whether children born to women with obesity during pregnancy show alterations that are detectable at birth. Epigenetic mechanisms such as DNA methylation modifications have been proposed to mediate prenatal programming. We investigated DNA methylation signatures in male and female infants from mothers with a normal Body Mass Index (BMI 18.5-24.9 kg/m2) compared to mothers with obesity (BMI≥30 kg/m2). BMI was measured during the first prenatal visit from women recruited into the Ontario Birth Study (OBS) at Mount Sinai Hospital in Toronto, ON, Canada. DNA was extracted from neonatal dried blood spots collected from heel pricks obtained 24 hours after birth at term (total n = 40) from women with a normal BMI and women with obesity matched for parity, age, and neonatal sex. Reduced representation bisulfite sequencing was used to identify genomic loci associated with differentially methylated regions (DMRs) in CpG-dense regions most likely to influence gene regulation. DMRs were predominantly localized to intergenic regions and gene bodies, with only 9% of DMRs localized to promoter regions. Genes associated with DMRs were compared to those from a large publicly available cohort study, the Avon Longitudinal Study of Parents and Children (ALSPAC; total n = 859). Hypergeometric tests revealed a significant overlap in genes associated with DMRs in the OBS and ALSPAC cohorts. PTPRN2, a gene involved in insulin secretion, and MAD1L1, which plays a role in the cell cycle and tumor suppression, contained DMRs in males and females in both cohorts. In males, KEGG pathway analysis revealed significant overrepresentation of genes involved in endocytosis and pathways in cancer, including IGF1R, which was previously shown to respond to diet-induced metabolic stress in animal models and in lymphocytes in the context of childhood obesity. These preliminary findings are consistent with Developmental Origins of Health and Disease paradigm, which posits that adverse prenatal exposures set developmental health trajectories.


Assuntos
Mães , Obesidade Infantil , Animais , Criança , Estudos de Coortes , Metilação de DNA , Feminino , Humanos , Estudos Longitudinais , Masculino , Ontário , Obesidade Infantil/genética , Gravidez
15.
FASEB J ; 36(4): e22245, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35262963

RESUMO

Antenatal synthetic glucocorticoids (sGCs) are a life-saving treatment in managing pre-term birth. However, off-target effects of sGCs can impact blood-brain barrier (BBB) drug transporters essential for fetal brain protection, including P-glycoprotein (P-gp/Abcb1) and breast cancer resistance protein (BCRP/Abcg2). We hypothesized that maternal antenatal sGC treatment modifies BBB function in juvenile offspring in a sex-dependent manner. Thus, the objective of this study was to determine the long-term impact of a single or multiple courses of betamethasone on P-gp/Abcb1 and BCRP/Abcg2 expression and function at the BBB. Pregnant guinea pigs (N = 42) received 3 courses (gestation days (GDs) 40, 50, and 60) or a single course (GD50) of betamethasone (1 mg/kg) or vehicle (saline). Cerebral microvessels and brain endothelial cells (BEC) were collected from the post-natal day (PND) 14 offspring to measure protein, gene expression, and function of the drug transporters P-gp/Abcb1 and BCRP/Abcg2. P-gp protein expression was decreased (p < .05) in microvessels from male offspring that had been exposed to multiple courses and a single course of sGC, in utero. Multiple courses of sGC resulted in a significant decrease in P-gp function in BECs from males (p < .05), but not females. There was a very strong trend for increased P-gp function in males compared to females (p = .055). Reduced P-gp expression and function at the BBB of young male offspring following multiple prenatal sGC exposures, is clinically relevant as many drugs administered postnatally are P-gp substrates. These novel sex differences in drug transporter function may underlie potential sexual dimorphism in drug sensitivity and toxicity in the newborn and juvenile brain.


Assuntos
Barreira Hematoencefálica , Glucocorticoides , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/genética , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Animais , Betametasona/metabolismo , Betametasona/farmacologia , Barreira Hematoencefálica/metabolismo , Células Endoteliais/metabolismo , Feminino , Glucocorticoides/metabolismo , Glucocorticoides/farmacologia , Cobaias , Masculino , Proteínas de Neoplasias/metabolismo , Gravidez
16.
Nutrients ; 13(8)2021 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-34444747

RESUMO

Assisted reproductive technologies (ART) may increase risk for abnormal placental development, preterm delivery and low birthweight. We investigated placental morphology, transporter expression and paired maternal/umbilical fasting blood nutrient levels in human term pregnancies conceived naturally (n = 10) or by intracytoplasmic sperm injection (ICSI; n = 11). Maternal and umbilical vein blood from singleton term (>37 weeks) C-section pregnancies were assessed for levels of free amino acids, glucose, free fatty acids (FFA), cholesterol, high density lipoprotein (HDL), low density lipoprotein (LDL), very low-density lipoprotein (VLDL) and triglycerides. We quantified placental expression of GLUT1 (glucose), SNAT2 (amino acids), P-glycoprotein (P-gp) and breast cancer resistance protein (BCRP) (drug) transporters, and placental morphology and pathology. Following ICSI, placental SNAT2 protein expression was downregulated and umbilical cord blood levels of citrulline were increased, while FFA levels were decreased at term (p < 0.05). Placental proliferation and apoptotic rates were increased in ICSI placentae (p < 0.05). No changes in maternal blood nutrient levels, placental GLUT1, P-gp and BCRP expression, or placental histopathology were observed. In term pregnancies, ICSI impairs placental SNAT2 transporter expression and cell turnover, and alters umbilical vein levels of specific nutrients without changing placental morphology. These may represent mechanisms through which ICSI impacts pregnancy outcomes and programs disease risk trajectories in offspring across the life course.


Assuntos
Fertilização , Sangue Fetal/metabolismo , Nutrientes , Placenta/metabolismo , Terceiro Trimestre da Gravidez , Injeções de Esperma Intracitoplásmicas/efeitos adversos , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Adulto , Sistema A de Transporte de Aminoácidos/metabolismo , Apoptose , Proliferação de Células , Feminino , Transportador de Glucose Tipo 1/metabolismo , Humanos , Proteínas de Neoplasias/metabolismo , Placenta/patologia , Gravidez , Resultado da Gravidez , Nascimento Prematuro/etiologia , Técnicas de Reprodução Assistida/efeitos adversos , Injeções de Esperma Intracitoplásmicas/métodos
17.
Front Microbiol ; 12: 706499, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34394055

RESUMO

Infection alters the expression of transporters that mediate the placental exchange of xenobiotics, lipids and cytokines. We hypothesized that lipopolysaccharide (LPS) modifies the expression of placental transport systems and lipid homeostasis. LPS (150 µg/kg; i.p.) treatments were administered for 4 h or 24 h, animals were euthanized at gestational days (GD) 15.5 or 18.5, and maternal blood, fetuses and placentae were collected. Increased rates of fetal demise were observed at GD15.5 following LPS treatment, whereas at GD18.5, high rates of early labour occurred and were associated with distinct proinflammatory responses. Lipopolysaccharide did not alter ATP-binding cassette (ABC) transporter mRNA expression but decreased fatty acid binding protein associated with plasma membrane (Fabppm) at GD15.5 (LPS-4 h) and increased fatty acid translocase (Fat/Cd36) mRNA at GD18.5 (LPS-4 h). At the protein level, breast cancer-related protein (Bcrp) and ABC sub-family G member 1 (Abcg1) levels were decreased in the placental labyrinth zone (Lz) at GD15.5, whereas P-glycoprotein (P-gp) and Bcrp Lz-immunostaining was decreased at GD18.5. In the placental junctional zone (Jz), P-gp, Bcrp and Abcg1 levels were higher at GD18.5. Specific maternal plasma and placental changes in triacylglycerol, free fatty acid, cholesterol, cholesterol ester and monoacylglycerol levels were detected in a gestational age-dependent manner. In conclusion, LPS-increased risk of fetal death and early labour were associated with altered placental ABC and lipid transporter expression and deranged maternal plasma and placental lipid homeostasis. These changes may potentially modify fetal xenobiotic exposure and placental lipid exchange in cases of bacterial infection.

18.
PLoS One ; 16(7): e0253364, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34270554

RESUMO

Of the 16 non-structural proteins (Nsps) encoded by SARS CoV-2, Nsp3 is the largest and plays important roles in the viral life cycle. Being a large, multidomain, transmembrane protein, Nsp3 has been the most challenging Nsp to characterize. Encoded within Nsp3 is the papain-like protease domain (PLpro) that cleaves not only the viral polypeptide but also K48-linked polyubiquitin and the ubiquitin-like modifier, ISG15, from host cell proteins. We here compare the interactors of PLpro and Nsp3 and find a largely overlapping interactome. Intriguingly, we find that near full length Nsp3 is a more active protease compared to the minimal catalytic domain of PLpro. Using a MALDI-TOF based assay, we screen 1971 approved clinical compounds and identify five compounds that inhibit PLpro with IC50s in the low micromolar range but showed cross reactivity with other human deubiquitinases and had no significant antiviral activity in cellular SARS-CoV-2 infection assays. We therefore looked for alternative methods to block PLpro activity and engineered competitive nanobodies that bind to PLpro at the substrate binding site with nanomolar affinity thus inhibiting the enzyme. Our work highlights the importance of studying Nsp3 and provides tools and valuable insights to investigate Nsp3 biology during the viral infection cycle.


Assuntos
Antivirais/farmacologia , Inibidores de Proteases/farmacologia , RNA Polimerase Dependente de RNA/antagonistas & inibidores , Anticorpos de Cadeia Única/farmacologia , Proteínas não Estruturais Virais/antagonistas & inibidores , Células A549 , Complexo Antígeno-Anticorpo , Humanos , Concentração Inibidora 50 , RNA Polimerase Dependente de RNA/imunologia , RNA Polimerase Dependente de RNA/metabolismo , Anticorpos de Cadeia Única/imunologia , Proteínas não Estruturais Virais/imunologia , Proteínas não Estruturais Virais/metabolismo
19.
Front Immunol ; 12: 680246, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34093581

RESUMO

Congenital Zika virus (ZIKV) infection can induce fetal brain abnormalities. Here, we investigated whether maternal ZIKV infection affects placental physiology and metabolic transport potential and impacts the fetal outcome, regardless of viral presence in the fetus at term. Low (103 PFU-ZIKVPE243; low ZIKV) and high (5x107 PFU-ZIKVPE243; high ZIKV) virus titers were injected into immunocompetent (ICompetent C57BL/6) and immunocompromised (ICompromised A129) mice at gestational day (GD) 12.5 for tissue collection at GD18.5 (term). High ZIKV elicited fetal death rates of 66% and 100%, whereas low ZIKV induced fetal death rates of 0% and 60% in C57BL/6 and A129 dams, respectively. All surviving fetuses exhibited intrauterine growth restriction (IUGR) and decreased placental efficiency. High-ZIKV infection in C57BL/6 and A129 mice resulted in virus detection in maternal spleens and placenta, but only A129 fetuses presented virus RNA in the brain. Nevertheless, pregnancies in both strains produced fetuses with decreased head sizes (p<0.05). Low-ZIKV-A129 dams had higher IL-6 and CXCL1 levels (p<0.05), and their placentas showed increased CCL-2 and CXCL-1 contents (p<0.05). In contrast, low-ZIKV-C57BL/6 dams had an elevated CCL2 serum level and increased type I and II IFN expression in the placenta. Notably, less abundant microvilli and mitochondrial degeneration were evidenced in the placental labyrinth zone (Lz) of ICompromised and high-ZIKV-ICompetent mice but not in low-ZIKV-C57BL/6 mice. In addition, decreased placental expression of the drug transporters P-glycoprotein (P-gp) and breast cancer resistance protein (Bcrp) and the lipid transporter Abca1 was detected in all ZIKV-infected groups, but Bcrp and Abca1 were only reduced in ICompromised and high-ZIKV ICompetent mice. Our data indicate that gestational ZIKV infection triggers specific proinflammatory responses and affects placental turnover and transporter expression in a manner dependent on virus concentration and maternal immune status. Placental damage may impair proper fetal-maternal exchange function and fetal growth/survival, likely contributing to congenital Zika syndrome.


Assuntos
Transportadores de Cassetes de Ligação de ATP/genética , Placenta/ultraestrutura , Placenta/virologia , Complicações Infecciosas na Gravidez , Infecção por Zika virus/genética , Infecção por Zika virus/virologia , Zika virus/fisiologia , Transportadores de Cassetes de Ligação de ATP/metabolismo , Animais , Apoptose , Biomarcadores , Feminino , Expressão Gênica , Interações Hospedeiro-Patógeno/genética , Interações Hospedeiro-Patógeno/imunologia , Imunidade , Hospedeiro Imunocomprometido , Imuno-Histoquímica , Masculino , Camundongos , Gravidez , Infecção por Zika virus/patologia
20.
Tissue Barriers ; 9(2): 1860616, 2021 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-33427563

RESUMO

P-glycoprotein (P-gp/ABCB1) and breast cancer resistance protein (BCRP/ABCG2) modulate the distribution of drugs and toxins across the blood-brain barrier (BBB). Animal studies reported that infection-induced disruption of these transporters in the developing BBB impairs fetal brain protection. However, the impact of infection mimics on P-gp/BCRP function in human brain endothelium is less well understood. We hypothesized that Toll-like receptor ligands mimicking bacterial and viral infection would modify the expression and function of P-gp and BCRP in human brain endothelial cells (BECs). Human cerebral microvascular endothelial cells (hCMEC/D3) were challenged with bacterial [Lipopolysaccharide (LPS)] and viral-mimics [polyinosinic:polycytidylic acid (PolyI:C) or single-stranded RNA (ssRNA)], or pro-inflammatory cytokines interleukin (IL)-6, tumor necrosis factor (TNF)-α and interferon gamma (IFN)-É£. P-gp and BCRP function was assessed after 4 or 24 h, using Calcein-AM and Chlorin-6 assays, respectively. Western blot and qPCR quantified P-gp/ABCB1 and BCRP/ABCG2 expression following treatments. Infection mimics are potent modulators of drug transporters in human BECs in vitro. LPS and PolyI:C increased, while ssRNA exposure reduced P-gp activity. In contrast, LPS and PolyI:C decreased, while ssRNA increased BCRP activity (P < .05). There was little correlation between drug transporter function, gene expression and total protein level. Altered plasma membrane BCRP may suggest modified intracellular trafficking induced by infection in human BECs. Bacterial and viral infection mimics modify P-gp and BCRP transport function in human BECs, in vitro. This knowledge may contribute and have important implications for human brain protection and possible altered biodistribution of drugs and xenobiotics in the brain following exposure to TLR agonists.


Assuntos
Transporte Biológico/fisiologia , Encéfalo/metabolismo , Resistência a Múltiplos Medicamentos/efeitos dos fármacos , Células Endoteliais/metabolismo , Expressão Gênica/genética , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA