Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Dis Model Mech ; 12(3)2019 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-30814064

RESUMO

Paneth cells are key epithelial cells that provide an antimicrobial barrier and maintain integrity of the small-intestinal stem cell niche. Paneth cell abnormalities are unfortunately detrimental to gut health and are often associated with digestive pathologies such as Crohn's disease or infections. Similar alterations are observed in individuals with impaired autophagy, a process that recycles cellular components. The direct effect of autophagy impairment on Paneth cells has not been analysed. To investigate this, we generated a mouse model lacking Atg16l1 specifically in intestinal epithelial cells, making these cells impaired in autophagy. Using three-dimensional intestinal organoids enriched for Paneth cells, we compared the proteomic profiles of wild-type and autophagy-impaired organoids. We used an integrated computational approach combining protein-protein interaction networks, autophagy-targeted proteins and functional information to identify the mechanistic link between autophagy impairment and disrupted pathways. Of the 284 altered proteins, 198 (70%) were more abundant in autophagy-impaired organoids, suggesting reduced protein degradation. Interestingly, these differentially abundant proteins comprised 116 proteins (41%) that are predicted targets of the selective autophagy proteins p62, LC3 and ATG16L1. Our integrative analysis revealed autophagy-mediated mechanisms that degrade key proteins in Paneth cell functions, such as exocytosis, apoptosis and DNA damage repair. Transcriptomic profiling of additional organoids confirmed that 90% of the observed changes upon autophagy alteration have effects at the protein level, not on gene expression. We performed further validation experiments showing differential lysozyme secretion, confirming our computationally inferred downregulation of exocytosis. Our observations could explain how protein-level alterations affect Paneth cell homeostatic functions upon autophagy impairment.This article has an associated First Person interview with the joint first authors of the paper.


Assuntos
Autofagia , Intestinos/fisiologia , Organoides/citologia , Organoides/metabolismo , Celulas de Paneth/metabolismo , Proteômica , Transcriptoma/genética , Animais , Proteínas Relacionadas à Autofagia , Proteínas de Transporte/metabolismo , Células Epiteliais/metabolismo , Exocitose , Feminino , Masculino , Camundongos Endogâmicos C57BL , Proteólise , Reprodutibilidade dos Testes
2.
Proteomics ; 18(16): e1800132, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29952134

RESUMO

Recently, 3D small intestinal organoids (enteroids) have been developed from cultures of intestinal stem cells which differentiate in vitro to generate all the differentiated epithelial cell types associated with the intestine and mimic the structural properties of the intestine observed in vivo. Small-molecule drug treatment can skew organoid epithelial cell differentiation toward particular lineages, and these skewed enteroids may provide useful tools to study specific epithelial cell populations, such as goblet and Paneth cells. However, the extent to which differentiated epithelial cell populations in these skewed enteroids represent their in vivo counterparts is not fully understood. This study utilises label-free quantitative proteomics to determine whether skewing murine enteroid cultures toward the goblet or Paneth cell lineages results in changes in abundance of proteins associated with these cell lineages in vivo. Here, proteomics data confirms that skewed enteroids recapitulate important features of the in vivo gut environment, demonstrating that they can serve as useful models for the investigation of normal and disease processes in the intestine. Furthermore, comparison of mass spectrometry data with histology data contained within the Human Protein Atlas identifies putative novel markers for goblet and Paneth cells.


Assuntos
Linhagem da Célula , Células Epiteliais/metabolismo , Células Caliciformes/metabolismo , Organoides/metabolismo , Celulas de Paneth/metabolismo , Proteômica/métodos , Animais , Benzotiazóis/farmacologia , Diferenciação Celular , Diaminas/farmacologia , Células Epiteliais/citologia , Células Epiteliais/efeitos dos fármacos , Células Caliciformes/citologia , Células Caliciformes/efeitos dos fármacos , Camundongos , Organoides/citologia , Organoides/efeitos dos fármacos , Celulas de Paneth/citologia , Celulas de Paneth/efeitos dos fármacos , Piridinas/farmacologia , Pirimidinas/farmacologia , Células-Tronco/citologia , Células-Tronco/efeitos dos fármacos , Células-Tronco/metabolismo , Tiazóis/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA