RESUMO
RNA modifications are dynamic chemical entities that expand the RNA lexicon and regulate RNA fate. The most abundant modification present in mRNAs, N6-methyladenosine (m6A), has been implicated in neurogenesis and memory formation. However, whether additional RNA modifications may be playing a role in neuronal functions and in response to environmental queues is largely unknown. Here we characterize the biochemical function and cellular dynamics of two human RNA methyltransferases previously associated with neurological dysfunction, TRMT1 and its homolog, TRMT1-like (TRMT1L). Using a combination of next-generation sequencing, LC-MS/MS, patient-derived cell lines and knockout mouse models, we confirm the previously reported dimethylguanosine (m2,2G) activity of TRMT1 in tRNAs, as well as reveal that TRMT1L, whose activity was unknown, is responsible for methylating a subset of cytosolic tRNAAla(AGC) isodecoders at position 26. Using a cellular in vitro model that mimics neuronal activation and long term potentiation, we find that both TRMT1 and TRMT1L change their subcellular localization upon neuronal activation. Specifically, we observe a major subcellular relocalization from mitochondria and other cytoplasmic domains (TRMT1) and nucleoli (TRMT1L) to different small punctate compartments in the nucleus, which are as yet uncharacterized. This phenomenon does not occur upon heat shock, suggesting that the relocalization of TRMT1 and TRMT1L is not a general reaction to stress, but rather a specific response to neuronal activation. Our results suggest that subcellular relocalization of RNA modification enzymes may play a role in neuronal plasticity and transmission of information, presumably by addressing new targets.
Assuntos
Encéfalo/metabolismo , Núcleo Celular/metabolismo , Neuroblastoma/patologia , Neurônios/metabolismo , Frações Subcelulares/metabolismo , tRNA Metiltransferases/metabolismo , Animais , Feminino , Camundongos , Camundongos Knockout , Neuroblastoma/genética , Neuroblastoma/metabolismo , Neurônios/citologia , tRNA Metiltransferases/genéticaRESUMO
Spiders are one of the most successful venomous animals, with more than 48,000 described species. Most spider venoms are dominated by cysteine-rich peptides with a diverse range of pharmacological activities. Some spider venoms contain thousands of unique peptides, but little is known about the mechanisms used to generate such complex chemical arsenals. We used an integrated transcriptomic, proteomic, and structural biology approach to demonstrate that the lethal Australian funnel-web spider produces 33 superfamilies of venom peptides and proteins. Twenty-six of the 33 superfamilies are disulfide-rich peptides, and we show that 15 of these are knottins that contribute >90% of the venom proteome. NMR analyses revealed that most of these disulfide-rich peptides are structurally related and range in complexity from simple to highly elaborated knottin domains, as well as double-knot toxins, that likely evolved from a single ancestral toxin gene.
Assuntos
Proteínas de Artrópodes/química , Proteínas de Artrópodes/genética , Venenos de Aranha/química , Animais , Proteínas de Artrópodes/análise , Austrália , Dípteros/efeitos dos fármacos , Dissulfetos , Evolução Molecular , Feminino , Perfilação da Expressão Gênica , Espectrometria de Massas , Peptídeos/análise , Peptídeos/química , Peptídeos/genética , Filogenia , Conformação Proteica , Proteômica/métodos , Venenos de Aranha/genética , Venenos de Aranha/toxicidade , Aranhas/genéticaRESUMO
BACKGROUND: RNA modifications play central roles in cellular fate and differentiation. However, the machinery responsible for placing, removing, and recognizing more than 170 RNA modifications remains largely uncharacterized and poorly annotated, and we currently lack integrative studies that identify which RNA modification-related proteins (RMPs) may be dysregulated in each cancer type. RESULTS: Here, we perform a comprehensive annotation and evolutionary analysis of human RMPs, as well as an integrative analysis of their expression patterns across 32 tissues, 10 species, and 13,358 paired tumor-normal human samples. Our analysis reveals an unanticipated heterogeneity of RMP expression patterns across mammalian tissues, with a vast proportion of duplicated enzymes displaying testis-specific expression, suggesting a key role for RNA modifications in sperm formation and possibly intergenerational inheritance. We uncover many RMPs that are dysregulated in various types of cancer, and whose expression levels are predictive of cancer progression. Surprisingly, we find that several commonly studied RNA modification enzymes such as METTL3 or FTO are not significantly upregulated in most cancer types, whereas several less-characterized RMPs, such as LAGE3 and HENMT1, are dysregulated in many cancers. CONCLUSIONS: Our analyses reveal an unanticipated heterogeneity in the expression patterns of RMPs across mammalian tissues and uncover a large proportion of dysregulated RMPs in multiple cancer types. We provide novel targets for future cancer research studies targeting the human epitranscriptome, as well as foundations to understand cell type-specific behaviors that are orchestrated by RNA modifications.
Assuntos
Neoplasias/genética , Processamento Pós-Transcricional do RNA , Animais , Proteínas de Transporte/metabolismo , Epididimo/metabolismo , Evolução Molecular , Humanos , Masculino , Meiose/genética , Metiltransferases/metabolismo , Camundongos , Anotação de Sequência Molecular , Neoplasias/metabolismo , Especificidade de Órgãos , Espermatogênese/genéticaRESUMO
Ultraconserved elements (UCEs) are among the most popular DNA markers for phylogenomic analysis. In at least three of five placental mammalian genomes (human, dog, cow, mouse, and rat), 2189 UCEs of at least 200 bp in length that are identical have been identified. Most of these regions have not yet been functionally annotated, and their associations with diseases remain largely unknown. This is an important knowledge gap in human genomics with regard to UCE roles in physiologically critical functions, and by extension, their relevance for shared susceptibilities to common complex diseases across several mammalian organisms in the event of their polymorphic variations. In the present study, we remapped the genomic locations of these UCEs to the latest human genome assembly, and examined them for documented polymorphisms in sequenced human genomes. We identified 29,983 polymorphisms within analyzed UCEs, but revealed that a vast majority exhibits very low minor allele frequencies. Notably, only 112 of the identified polymorphisms are associated with a phenotype in the Ensembl genome browser. Through literature analyses, we confirmed associations of 37 (i.e., out of the 112) polymorphisms within 23 UCEs with 25 diseases and phenotypic traits, including, muscular dystrophies, eye diseases, and cancers (e.g., familial adenomatous polyposis). Most reports of UCE polymorphism-disease associations appeared to be not cognizant that their candidate polymorphisms were actually within UCEs. The present study offers strategic directions and knowledge gaps for future computational and experimental work so as to better understand the thus far intriguing and puzzling role(s) of UCEs in mammalian genomes.
Assuntos
Sequência Conservada , Marcadores Genéticos , Variação Genética , Genoma Humano , Genômica , Predisposição Genética para Doença , Genômica/métodos , Humanos , Fases de Leitura Aberta , Fenótipo , Filogenia , Polimorfismo GenéticoRESUMO
The epitranscriptomics field has undergone an enormous expansion in the last few years; however, a major limitation is the lack of generic methods to map RNA modifications transcriptome-wide. Here, we show that using direct RNA sequencing, N6-methyladenosine (m6A) RNA modifications can be detected with high accuracy, in the form of systematic errors and decreased base-calling qualities. Specifically, we find that our algorithm, trained with m6A-modified and unmodified synthetic sequences, can predict m6A RNA modifications with ~90% accuracy. We then extend our findings to yeast data sets, finding that our method can identify m6A RNA modifications in vivo with an accuracy of 87%. Moreover, we further validate our method by showing that these 'errors' are typically not observed in yeast ime4-knockout strains, which lack m6A modifications. Our results open avenues to investigate the biological roles of RNA modifications in their native RNA context.
Assuntos
Adenosina/análogos & derivados , RNA/genética , RNA/metabolismo , Adenosina/metabolismo , Sequência de Bases , Eletricidade , Saccharomyces cerevisiae/genética , Análise de Sequência de RNA , Máquina de Vetores de SuporteRESUMO
The amount of regulatory RNA encoded in the genome and the extent of RNA editing by the post-transcriptional deamination of adenosine to inosine (A-I) have increased with developmental complexity and may be an important factor in the cognitive evolution of animals. The newest member of the A-I editing family of ADAR proteins, the vertebrate-specific ADAR3, is highly expressed in the brain, but its functional significance is unknown. In vitro studies have suggested that ADAR3 acts as a negative regulator of A-I RNA editing but the scope and underlying mechanisms are also unknown. Meta-analysis of published data indicates that mouse Adar3 expression is highest in the hippocampus, thalamus, amygdala, and olfactory region. Consistent with this, we show that mice lacking exon 3 of Adar3 (which encodes two double stranded RNA binding domains) have increased levels of anxiety and deficits in hippocampus-dependent short- and long-term memory formation. RNA sequencing revealed a dysregulation of genes involved in synaptic function in the hippocampi of Adar3-deficient mice. We also show that ADAR3 transiently translocates from the cytoplasm to the nucleus upon KCl-mediated activation in SH-SY5Y cells. These results indicate that ADAR3 contributes to cognitive processes in mammals.
RESUMO
RNA modifications have been historically considered as fine-tuning chemo-structural features of infrastructural RNAs, such as rRNAs, tRNAs, and snoRNAs. This view has changed dramatically in recent years, to a large extent as a result of systematic efforts to map and quantify various RNA modifications in a transcriptome-wide manner, revealing that RNA modifications are reversible, dynamically regulated, far more widespread than originally thought, and involved in major biological processes, including cell differentiation, sex determination, and stress responses. Here we summarize the state of knowledge and provide a catalog of RNA modifications and their links to neurological disorders, cancers, and other diseases. With the advent of direct RNA-sequencing technologies, we expect that this catalog will help prioritize those RNA modifications for transcriptome-wide maps.
Assuntos
Doença/genética , Processamento Pós-Transcricional do RNA , RNA/química , Animais , HumanosRESUMO
BACKGROUND: A variety of bacteria are known to influence carcinogenesis. Therefore, we sought to investigate if publicly available whole genome and whole transcriptome sequencing data generated by large public cancer genome efforts, like The Cancer Genome Atlas (TCGA), could be used to identify bacteria associated with cancer. The Burrows-Wheeler aligner (BWA) was used to align a subset of Illumina paired-end sequencing data from TCGA to the human reference genome and all complete bacterial genomes in the RefSeq database in an effort to identify bacterial read pairs from the microbiome. RESULTS: Through careful consideration of all of the bacterial taxa present in the cancer types investigated, their relative abundance, and batch effects, we were able to identify some read pairs from certain taxa as likely resulting from contamination. In particular, the presence of Mycobacterium tuberculosis complex in the ovarian serous cystadenocarcinoma (OV) and glioblastoma multiforme (GBM) samples was correlated with the sequencing center of the samples. Additionally, there was a correlation between the presence of Ralstonia spp. and two specific plates of acute myeloid leukemia (AML) samples. At the end, associations remained between Pseudomonas-like and Acinetobacter-like read pairs in AML, and Pseudomonas-like read pairs in stomach adenocarcinoma (STAD) that could not be explained through batch effects or systematic contamination as seen in other samples. CONCLUSIONS: This approach suggests that it is possible to identify bacteria that may be present in human tumor samples from public genome sequencing data that can be examined further experimentally. More weight should be given to this approach in the future when bacterial associations with diseases are suspected.
Assuntos
Carcinoma/genética , Carcinoma/microbiologia , Bases de Dados Genéticas , Genoma Bacteriano , Genoma Humano , Leucemia Mieloide Aguda/microbiologia , Microbiota , Acinetobacter/genética , Bactérias/genética , Bactérias/isolamento & purificação , Sequência de Bases , Carcinoma/classificação , Carcinoma Epitelial do Ovário , Mapeamento Cromossômico , Cistadenocarcinoma Seroso/genética , Cistadenocarcinoma Seroso/microbiologia , Glioblastoma/genética , Glioblastoma/microbiologia , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Leucemia Mieloide Aguda/genética , Mycobacterium tuberculosis/genética , Neoplasias Epiteliais e Glandulares/genética , Neoplasias Epiteliais e Glandulares/microbiologia , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/microbiologia , Pseudomonas/genéticaRESUMO
RNA sequencing (RNA-seq) can be used to assemble spliced isoforms, quantify expressed genes and provide a global profile of the transcriptome. However, the size and diversity of the transcriptome, the wide dynamic range in gene expression and inherent technical biases confound RNA-seq analysis. We have developed a set of spike-in RNA standards, termed 'sequins' (sequencing spike-ins), that represent full-length spliced mRNA isoforms. Sequins have an entirely artificial sequence with no homology to natural reference genomes, but they align to gene loci encoded on an artificial in silico chromosome. The combination of multiple sequins across a range of concentrations emulates alternative splicing and differential gene expression, and it provides scaling factors for normalization between samples. We demonstrate the use of sequins in RNA-seq experiments to measure sample-specific biases and determine the limits of reliable transcript assembly and quantification in accompanying human RNA samples. In addition, we have designed a complementary set of sequins that represent fusion genes arising from rearrangements of the in silico chromosome to aid in cancer diagnosis. RNA sequins provide a qualitative and quantitative reference with which to navigate the complexity of the human transcriptome.
Assuntos
Perfilação da Expressão Gênica/normas , Genes Sintéticos , Splicing de RNA , RNA Mensageiro/genética , Análise de Sequência de RNA/normas , Cromossomos Artificiais , Humanos , Controle de Qualidade , Splicing de RNA/genética , RNA Mensageiro/síntese química , RNA Mensageiro/química , Padrões de Referência , Análise de Sequência de RNA/métodosRESUMO
The long noncoding RNA SPRIGHTLY (formerly SPRY4-IT1), which lies within the intronic region of the SPRY4 gene, is up-regulated in human melanoma cells compared to melanocytes. SPRIGHTLY regulates a number of cancer hallmarks, including proliferation, motility, and apoptosis. To better understand its oncogenic role, SPRIGHTLY was stably transfected into human melanocytes, which resulted in increased cellular proliferation, colony formation, invasion, and development of a multinucleated dendritic-like phenotype. RNA sequencing and mass spectrometric analysis of SPRIGHTLY-expressing cells revealed changes in the expression of genes involved in cell proliferation, apoptosis, chromosome organization, regulation of DNA damage responses, and cell cycle. The proliferation marker Ki67, minichromosome maintenance genes 2-5, antiapoptotic gene X-linked inhibitor of apoptosis, and baculoviral IAP repeat-containing 7 were all up-regulated in SPRIGHTLY-expressing melanocytes, whereas the proapoptotic tumor suppressor gene DPPIV/CD26 was down-regulated, followed by an increase in extracellular signal-regulated kinase 1/2 phosphorylation, suggesting an increase in mitogen-activated protein kinase activity. Because down-regulation of DPPIV is known to be associated with malignant transformation in melanocytes, SPRIGHTLY-mediated DPPIV down-regulation may play an important role in melanoma pathobiology. Together, these findings provide important insights into how SPRIGHTLY regulates cell proliferation and anchorage-independent colony formation in primary human melanocytes.
Assuntos
Regulação da Expressão Gênica , Melanócitos/citologia , RNA Longo não Codificante/metabolismo , Animais , Apoptose , Linhagem Celular , Proliferação de Células , Dipeptidil Peptidase 4/metabolismo , Perfilação da Expressão Gênica , Humanos , Antígeno Ki-67/metabolismo , Lentivirus/genética , Sistema de Sinalização das MAP Quinases , Espectrometria de Massas , Melanócitos/metabolismo , Camundongos , Camundongos SCID , Componente 2 do Complexo de Manutenção de Minicromossomo/metabolismo , Fenótipo , Análise de Sequência de RNARESUMO
BACKGROUND: RNA-directed regulation of epigenetic processes has recently emerged as an important feature of mammalian differentiation and development. Perturbation of this regulatory system in the brain may contribute to the development of neuropsychiatric disorders. METHODS: RNA sequencing was used to identify changes in the experience-dependent expression of long noncoding RNAs (lncRNAs) within the medial prefrontal cortex of adult mice. Transcripts were validated by real-time quantitative polymerase chain reaction and a candidate lncRNA, Gomafu, was selected for further investigation. The functional role of this schizophrenia-related lncRNA was explored in vivo by antisense oligonucleotide-mediated gene knockdown in the medial prefrontal cortex, followed by behavioral training and assessment of fear-related anxiety. Long noncoding RNA-directed epigenetic regulation of gene expression was investigated by chromatin and RNA immunoprecipitation assays. RESULTS: RNA sequencing analysis revealed changes in the expression of a significant number of genes related to neural plasticity and stress, as well as the dynamic regulation of lncRNAs. In particular, we detected a significant downregulation of Gomafu lncRNA. Our results revealed that Gomafu plays a role in mediating anxiety-like behavior and suggest that this may occur through an interaction with a key member of the polycomb repressive complex 1, BMI1, which regulates the expression of the schizophrenia-related gene beta crystallin (Crybb1). We also demonstrated a novel role for Crybb1 in mediating fear-induced anxiety-like behavior. CONCLUSIONS: Experience-dependent expression of lncRNAs plays an important role in the epigenetic regulation of adaptive behavior, and the perturbation of Gomafu may be related to anxiety and the development of neuropsychiatric disorders.
Assuntos
Ansiedade/metabolismo , Ansiedade/fisiopatologia , Epigênese Genética , Medo/fisiologia , Córtex Pré-Frontal/metabolismo , RNA Longo não Codificante/metabolismo , Animais , Ansiedade/genética , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Proteínas de Transporte/metabolismo , Células Cultivadas , Condicionamento Clássico/fisiologia , Cristalinas/metabolismo , Perfilação da Expressão Gênica , Proteínas de Arcabouço Homer , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteínas do Grupo Polycomb/metabolismo , Regiões Promotoras Genéticas , RNA Longo não Codificante/genética , RNA Mensageiro/metabolismo , Cadeia B de beta-CristalinaRESUMO
During the splicing reaction, the 5' intron end is joined to the branchpoint nucleotide, selecting the next exon to incorporate into the mature RNA and forming an intron lariat, which is excised. Despite a critical role in gene splicing, the locations and features of human splicing branchpoints are largely unknown. We use exoribonuclease digestion and targeted RNA-sequencing to enrich for sequences that traverse the lariat junction and, by split and inverted alignment, reveal the branchpoint. We identify 59,359 high-confidence human branchpoints in >10,000 genes, providing a first map of splicing branchpoints in the human genome. Branchpoints are predominantly adenosine, highly conserved, and closely distributed to the 3' splice site. Analysis of human branchpoints reveals numerous novel features, including distinct features of branchpoints for alternatively spliced exons and a family of conserved sequence motifs overlapping branchpoints we term B-boxes, which exhibit maximal nucleotide diversity while maintaining interactions with the keto-rich U2 snRNA. Different B-box motifs exhibit divergent usage in vertebrate lineages and associate with other splicing elements and distinct intron-exon architectures, suggesting integration within a broader regulatory splicing code. Lastly, although branchpoints are refractory to common mutational processes and genetic variation, mutations occurring at branchpoint nucleotides are enriched for disease associations.
Assuntos
Sequência Consenso , Genômica , Íntrons , Splicing de RNA , Processamento Alternativo , Animais , Biologia Computacional/métodos , Evolução Molecular , Éxons , Variação Genética , Genômica/métodos , Humanos , Motivos de Nucleotídeos , Matrizes de Pontuação de Posição Específica , Sítios de Splice de RNARESUMO
Expression of the long noncoding RNA (lncRNA) SPRY4-IT1 is low in normal human melanocytes but high in melanoma cells. siRNA knockdown of SPRY4-IT1 blocks melanoma cell invasion and proliferation, and increases apoptosis. To investigate its function further, we affinity purified SPRY4-IT1 from melanoma cells and used mass spectrometry to identify the protein lipin 2, an enzyme that converts phosphatidate to diacylglycerol (DAG), as a major binding partner. SPRY4-IT1 knockdown increases the accumulation of lipin2 protein and upregulate the expression of diacylglycerol O-acyltransferase 2 (DGAT2) an enzyme involved in the conversion of DAG to triacylglycerol (TAG). When SPRY4-IT1 knockdown and control melanoma cells were subjected to shotgun lipidomics, an MS-based assay that permits the quantification of changes in the cellular lipid profile, we found that SPRY4-IT1 knockdown induced significant changes in a number of lipid species, including increased acyl carnitine, fatty acyl chains, and triacylglycerol (TAG). Together, these results suggest the possibility that SPRY4-IT1 knockdown may induce apoptosis via lipin 2-mediated alterations in lipid metabolism leading to cellular lipotoxicity.
Assuntos
Apoptose/genética , Peptídeos e Proteínas de Sinalização Intracelular/genética , Melanoma/genética , Proteínas do Tecido Nervoso/genética , Proteínas Nucleares/metabolismo , RNA Longo não Codificante/genética , Carnitina/biossíntese , Linhagem Celular Tumoral , Proliferação de Células/genética , Diacilglicerol O-Aciltransferase/biossíntese , Humanos , Metabolismo dos Lipídeos/genética , Invasividade Neoplásica/genética , Interferência de RNA , RNA Longo não Codificante/biossíntese , RNA Interferente Pequeno , Triglicerídeos/biossínteseAssuntos
Atenção à Saúde/tendências , Genômica/tendências , Qualidade de Vida , Austrália , Análise Custo-Benefício/tendências , Atenção à Saúde/economia , Previsões , Triagem de Portadores Genéticos , Doenças Genéticas Inatas/diagnóstico , Doenças Genéticas Inatas/economia , Doenças Genéticas Inatas/terapia , Predisposição Genética para Doença/genética , Privacidade Genética/tendências , Genômica/economia , Humanos , Cooperação Internacional , Técnicas de Diagnóstico Molecular/economia , Técnicas de Diagnóstico Molecular/tendências , Neoplasias/diagnóstico , Neoplasias/genética , Neoplasias/terapia , Medicina de Precisão/economia , Medicina de Precisão/tendênciasRESUMO
BACKGROUND: Patients with neuroblastoma due to the amplification of a 130-kb genomic DNA region containing the MYCN oncogene have poor prognoses. METHODS: Bioinformatics data were used to discover a novel long noncoding RNA, lncUSMycN, at the 130-kb amplicon. RNA-protein pull-down assays were used to identify proteins bound to lncUSMycN RNA. Kaplan-Meier survival analysis, multivariable Cox regression, and two-sided log-rank test were used to examine the prognostic value of lncUSMycN and NonO expression in three cohorts of neuroblastoma patients (n = 47, 88, and 476, respectively). Neuroblastoma-bearing mice were treated with antisense oligonucleotides targeting lncUSMycN (n = 12) or mismatch sequence (n = 13), and results were analyzed by multiple comparison two-way analysis of variance. All statistical tests were two-sided. RESULTS: Bioinformatics data predicted lncUSMycN gene and RNA, and reverse-transcription polymerase chain reaction confirmed its three exons and two introns. The lncUSMycN gene was coamplified with MYCN in 88 of 341 human neuroblastoma tissues. lncUSMycN RNA bound to the RNA-binding protein NonO, leading to N-Myc RNA upregulation and neuroblastoma cell proliferation. High levels of lncUSMycN and NonO expression in human neuroblastoma tissues independently predicted poor patient prognoses (lncUSMycN: hazard ratio [HR] = 1.87, 95% confidence interval [CI] = 1.06 to 3.28, P = .03; NonO: HR = 2.48, 95% CI = 1.34 to 4.57, P = .004). Treatment with antisense oligonucleotides targeting lncUSMycN in neuroblastoma-bearing mice statistically significantly hindered tumor progression (P < .001). CONCLUSIONS: Our data demonstrate the important roles of lncUSMycN and NonO in regulating N-Myc expression and neuroblastoma oncogenesis and provide the first evidence that amplification of long noncoding RNA genes can contribute to tumorigenesis.
Assuntos
Genes myc , Neuroblastoma/metabolismo , Neuroblastoma/patologia , Proteínas Nucleares/genética , Proteínas Oncogênicas/genética , Proteínas Proto-Oncogênicas/genética , RNA Longo não Codificante/metabolismo , Animais , Proliferação de Células , Proteínas de Ligação a DNA/metabolismo , Progressão da Doença , Regulação Neoplásica da Expressão Gênica , Estimativa de Kaplan-Meier , Camundongos , Proteína Proto-Oncogênica N-Myc , Neuroblastoma/genética , Proteínas Associadas à Matriz Nuclear/metabolismo , Fatores de Transcrição de Octâmero/metabolismo , Oligonucleotídeos Antissenso , Valor Preditivo dos Testes , Prognóstico , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Regulação para CimaRESUMO
Metastatic melanoma is a malignant cancer with generally poor prognosis, with no targeted chemotherapy. To identify epigenetic changes related to melanoma, we have determined genome-wide methylated CpG island distributions by next-generation sequencing. Melanoma chromosomes tend to be differentially methylated over short CpG island tracts. CpG islands in the upstream regulatory regions of many coding and noncoding RNA genes, including, for example, TERC, which encodes the telomerase RNA, exhibit extensive hypermethylation, whereas several repeated elements, such as LINE 2, and several LTR elements, are hypomethylated in advanced stage melanoma cell lines. By using CpG island demethylation profiles, and by integrating these data with RNA-seq data obtained from melanoma cells, we have identified a co-expression network of differentially methylated genes with significance for cancer related functions. Focused assays of melanoma patient tissue samples for CpG island methylation near the noncoding RNA gene SNORD-10 demonstrated high specificity.
Assuntos
Ilhas de CpG , Metilação de DNA , Epigênese Genética , Regulação Neoplásica da Expressão Gênica , Redes Reguladoras de Genes , Melanoma/genética , Linhagem Celular Tumoral , Análise por Conglomerados , Perfilação da Expressão Gênica , Ordem dos Genes , Estudo de Associação Genômica Ampla , Humanos , Sequências Repetitivas de Ácido NucleicoRESUMO
Over the past several decades, to develop a fundamental understanding of inflammation's progression, research has focused on extracellular mediators, such as cytokines, as characteristic components of inflammatory response. These efforts have recently been complemented by advances in proteomics that allow analysis of multiple signaling proteins in parallel, to provide more complete mechanistic models of inflammation. In this review, we discuss various techniques for assessing protein activity, as well as computational techniques that are well suited for interpreting large amounts of proteomic data to generate signaling networks or for modeling the dynamics of known network interactions. We also discuss examples that explore these experimental and computational techniques in tandem to generate signaling networks under various conditions and that link those networks to transcriptional activity. Further advancements in this field will likely provide an explicit description of inflammatory response, paving the way for better diagnostics and therapies in clinic.
Assuntos
Inflamação/metabolismo , Transdução de Sinais , Transcrição Gênica , Animais , Apoptose , Teorema de Bayes , Linhagem Celular Tumoral , Biologia Computacional , Citocinas/metabolismo , Corantes Fluorescentes/química , Redes Reguladoras de Genes , Humanos , Imunidade Inata , Espectrometria de Massas , Análise Serial de Proteínas , Proteômica , Análise de RegressãoRESUMO
Cells and organisms are subject to challenges and perturbations in their environment and physiology in all stages of life. The molecular response to such changes, including insulting conditions such as pathogen infections, involves coordinated modulation of gene expression programmes and has not only homeostatic but also ecological and evolutionary importance. Although attention has been primarily focused on signalling pathways and protein networks, non-coding RNAs (ncRNAs), which comprise a significant output of the genomes of prokaryotes and especially eukaryotes, are increasingly implicated in the molecular mechanisms of these responses. Long and short ncRNAs not only regulate development and cell physiology, they are also involved in disease states, including cancers, in host-pathogen interactions, and in a variety of stress responses. Indeed, regulatory RNAs are part of genetically encoded response networks and also underpin epigenetic processes, which are emerging as key mechanisms of adaptation and transgenerational inheritance. Here we present the growing evidence that ncRNAs are intrinsically involved in cellular and organismal adaptation processes, in both robustness and protection to stresses, as well as in mechanisms generating evolutionary change.
Assuntos
RNA não Traduzido/genética , Animais , Evolução Biológica , Epigênese Genética/genética , Homeostase/genética , Homeostase/fisiologia , Humanos , Transdução de Sinais/genética , Transdução de Sinais/fisiologia , Estresse Fisiológico/genética , Estresse Fisiológico/fisiologiaRESUMO
Adenosine to inosine (A > I) RNA editing, which is catalyzed by the ADAR family of proteins, is one of the fundamental mechanisms by which transcriptomic diversity is generated. Indeed, a number of genome-wide analyses have shown that A > I editing is not limited to a few mRNAs, as originally thought, but occurs widely across the transcriptome, especially in the brain. Importantly, there is increasing evidence that A > I editing is essential for animal development and nervous system function. To more efficiently characterize the complete catalog of ADAR events in the mammalian transcriptome we developed a high-throughput protocol to identify A > I editing sites, which exploits the capacity of glyoxal to protect guanosine, but not inosine, from RNAse T1 treatment, thus facilitating extraction of RNA fragments with inosine bases at their termini for high-throughput sequencing. Using this method we identified 665 editing sites in mouse brain RNA, including most known sites and suite of novel sites that include nonsynonymous changes to protein-coding genes, hyperediting of genes known to regulate p53, and alterations to non-protein-coding RNAs. This method is applicable to any biological system for the de novo discovery of A > I editing sites, and avoids the complicated informatic and practical issues associated with editing site identification using traditional RNA sequencing data. This approach has the potential to substantially increase our understanding of the extent and function of RNA editing, and thereby to shed light on the role of transcriptional plasticity in evolution, development, and cognition.
Assuntos
Adenosina/genética , Genoma/genética , Inosina/genética , Edição de RNA/genética , RNA não Traduzido/genética , Animais , Sequência de Bases , Encéfalo , Genômica , Glioxal , Guanosina/genética , Sequenciamento de Nucleotídeos em Larga Escala , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Dados de Sequência Molecular , RNA/química , RNA/genética , Ribonuclease T1/metabolismo , Análise de Sequência de DNA , Análise de Sequência de RNA , TranscriptomaRESUMO
Bone marrow-derived endothelial progenitor cells (EPC) contribute to the angiogenesis-dependent growth of tumors in mice and humans. EPCs regulate the angiogenic switch via paracrine secretion of proangiogenic growth factors and by direct luminal incorporation into sprouting nascent vessels. miRNAs have emerged as key regulators of several cellular processes including angiogenesis; however, whether miRNAs contribute to bone marrow-mediated angiogenesis has remained unknown. Here, we show that genetic ablation of miRNA-processing enzyme Dicer, specifically in the bone marrow, decreased the number of circulating EPCs, resulting in angiogenesis suppression and impaired tumor growth. Furthermore, genome-wide deep sequencing of small RNAs revealed tumor EPC-intrinsic miRNAs including miR-10b and miR-196b, which have been previously identified as key regulators of HOX signaling and adult stem cell differentiation. Notably, we found that both miR-10b and miR-196b are responsive to vascular endothelial growth factor stimulation and show elevated expression in human high-grade breast tumor vasculature. Strikingly, targeting miR-10b and miR-196b led to significant defects in angiogenesis-mediated tumor growth in mice. Targeting these miRNAs may constitute a novel strategy for inhibiting tumor angiogenesis.