Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cell Stem Cell ; 30(10): 1299-1314.e9, 2023 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-37802036

RESUMO

Cell replacement therapies for Parkinson's disease (PD) based on transplantation of pluripotent stem cell-derived dopaminergic neurons are now entering clinical trials. Here, we present quality, safety, and efficacy data supporting the first-in-human STEM-PD phase I/IIa clinical trial along with the trial design. The STEM-PD product was manufactured under GMP and quality tested in vitro and in vivo to meet regulatory requirements. Importantly, no adverse effects were observed upon testing of the product in a 39-week rat GLP safety study for toxicity, tumorigenicity, and biodistribution, and a non-GLP efficacy study confirmed that the transplanted cells mediated full functional recovery in a pre-clinical rat model of PD. We further observed highly comparable efficacy results between two different GMP batches, verifying that the product can be serially manufactured. A fully in vivo-tested batch of STEM-PD is now being used in a clinical trial of 8 patients with moderate PD, initiated in 2022.


Assuntos
Células-Tronco Embrionárias Humanas , Doença de Parkinson , Humanos , Ratos , Animais , Doença de Parkinson/terapia , Distribuição Tecidual , Diferenciação Celular/fisiologia , Transplante de Células-Tronco/métodos , Neurônios Dopaminérgicos/fisiologia
2.
J Parkinsons Dis ; 12(8): 2307-2320, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36189605

RESUMO

Injections of pre-formed α-synuclein fibrils (PFFs) or overexpression of α-synuclein using AAV vectors are commonly used as models of Parkinson-like synucleinopathy in rats and mice. In the modified method reviewed here, the "SynFib" model, the PFFs and the AAV vector are administered together unilaterally into the substantia nigra. This approach combines the key features of these two models, i.e., the generation of toxic α-synuclein aggregates and Lewy body-like inclusions, in combination with the increased vulnerability caused by increased cellular levels of α-synuclein. The combined AAV/PFF delivery offers several advantages over the standard PFF model due to the enhanced and accelerated α-synuclein pathology and microglial response induced by the PFF seeds in the presence of an elevated α-synuclein level. Injection of the AAV/PFF mixture into the substantia nigra makes it possible to target a larger proportion of the nigral dopamine neurons and obtain a level of dopamine cell loss (>60%) needed to induce significant impairments in drug-induced and spontaneous motor tests. The SynFib model shares attractive features of the standard 6-OHDA lesion model: a single unilateral stereotaxic intervention; pathology and cell loss developing over a short time span; and the possibility to monitor the degenerative changes using tests of motor behavior.


Assuntos
Doença de Parkinson , Sinucleinopatias , Ratos , Camundongos , Animais , alfa-Sinucleína/metabolismo , Sinucleinopatias/patologia , Dopamina , Doença de Parkinson/patologia , Encéfalo/metabolismo , Substância Negra/metabolismo , Modelos Animais de Doenças
3.
J Parkinsons Dis ; 11(2): 515-528, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33361611

RESUMO

BACKGROUND: Human induced pluripotent stem cells (hiPSCs) have been proposed as an alternative source for cell replacement therapy for Parkinson's disease (PD) and they provide the option of using the patient's own cells. A few studies have investigated transplantation of patient-derived dopaminergic (DA) neurons in preclinical models; however, little is known about the long-term integrity and function of grafts derived from patients with PD. OBJECTIVE: To assess the viability and function of DA neuron grafts derived from a patient hiPSC line with an α-synuclein gene triplication (AST18), using a clinical grade human embryonic stem cell (hESC) line (RC17) as a reference control. METHODS: Cells were differentiated into ventral mesencephalic (VM)-patterned DA progenitors using an established GMP protocol. The progenitors were then either terminally differentiated to mature DA neurons in vitro or transplanted into 6-hydroxydopamine (6-OHDA) lesioned rats and their survival, maturation, function, and propensity to develop α-synuclein related pathology, were assessed in vivo. RESULTS: Both cell lines generated functional neurons with DA properties in vitro. AST18-derived VM progenitor cells survived transplantation and matured into neuron-rich grafts similar to the RC17 cells. After 24 weeks, both cell lines produced DA-rich grafts that mediated full functional recovery; however, pathological changes were only observed in grafts derived from the α-synuclein triplication patient line. CONCLUSION: This data shows proof-of-principle for survival and functional recovery with familial PD patient-derived cells in the 6-OHDA model of PD. However, signs of slowly developing pathology warrants further investigation before use of autologous grafts in patients.


Assuntos
Células-Tronco Pluripotentes Induzidas , Oxidopamina/farmacologia , Doença de Parkinson , Sinucleinopatias , alfa-Sinucleína/química , Animais , Neurônios Dopaminérgicos/metabolismo , Humanos , Oxidopamina/química , Doença de Parkinson/terapia , Ratos , alfa-Sinucleína/genética
4.
Proc Natl Acad Sci U S A ; 117(26): 15209-15220, 2020 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-32541058

RESUMO

Preclinical assessment of the therapeutic potential of dopamine (DA) neuron replacement in Parkinson's disease (PD) has primarily been performed in the 6-hydroxydopamine toxin model. While this is a good model to assess graft function, it does not reflect the pathological features or progressive nature of the disease. In this study, we establish a humanized transplantation model of PD that better recapitulates the main disease features, obtained by coinjection of preformed human α-synuclein (α-syn) fibrils and adeno-associated virus (AAV) expressing human wild-type α-syn unilaterally into the rat substantia nigra (SN). This model gives rise to DA neuron dysfunction and progressive loss of DA neurons from the SN and terminals in the striatum, accompanied by extensive α-syn pathology and a prominent inflammatory response, making it an interesting and relevant model in which to examine long-term function and integrity of transplanted neurons in a PD-like brain. We transplanted DA neurons derived from human embryonic stem cells (hESCs) into the striatum and assessed their survival, growth, and function over 6 to 18 wk. We show that the transplanted cells, even in the presence of ongoing pathology, are capable of innervating the DA-depleted striatum. However, on closer examination of the grafts, we found evidence of α-syn pathology in the form of inclusions of phosphorylated α-syn in a small fraction of the grafted DA neurons, indicating host-to-graft transfer of α-syn pathology, a phenomenon that has previously been observed in PD patients receiving fetal tissue grafts but has not been possible to demonstrate and study in toxin-based animal models.


Assuntos
Células-Tronco Embrionárias/fisiologia , Transplante de Células-Tronco , Sinucleinopatias , alfa-Sinucleína/metabolismo , Animais , Sobrevivência Celular , Neurônios Dopaminérgicos/metabolismo , Regulação para Baixo , Feminino , Humanos , Inflamação , Degeneração Neural , Ratos , Ratos Sprague-Dawley , Substância Negra/citologia
5.
Cell Rep ; 28(13): 3462-3473.e5, 2019 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-31553914

RESUMO

Cell replacement is currently being explored as a therapeutic approach for neurodegenerative disease. Using stem cells as a source, transplantable progenitors can now be generated under conditions compliant with clinical application in patients. In this study, we elucidate factors controlling target-appropriate innervation and circuitry integration of human embryonic stem cell (hESC)-derived grafts after transplantation to the adult brain. We show that cell-intrinsic factors determine graft-derived axonal innervation, whereas synaptic inputs from host neurons primarily reflect the graft location. Furthermore, we provide evidence that hESC-derived dopaminergic grafts transplanted in a long-term preclinical rat model of Parkinson's disease (PD) receive synaptic input from subtypes of host cortical, striatal, and pallidal neurons that are known to regulate the function of endogenous nigral dopamine neurons. This refined understanding of how graft neurons integrate with host circuitry will be important for the design of clinical stem-cell-based replacement therapies for PD, as well as for other neurodegenerative diseases.


Assuntos
Gânglios da Base/fisiopatologia , Células-Tronco Embrionárias Humanas/metabolismo , Doença de Parkinson/genética , Animais , Modelos Animais de Doenças , Humanos , Camundongos Nus , Ratos
6.
J Comp Neurol ; 526(13): 2133-2146, 2018 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-30007046

RESUMO

Dopamine (DA) neurons derived from human embryonic stem cells (hESCs) are a promising unlimited source of cells for cell replacement therapy in Parkinson's disease (PD). A number of studies have demonstrated functionality of DA neurons originating from hESCs when grafted to the striatum of rodent and non-human primate models of PD. However, several questions remain in regard to their axonal outgrowth potential and capacity to integrate into host circuitry. Here, ventral midbrain (VM) patterned hESC-derived progenitors were grafted into the midbrain of 6-hydroxydopamine-lesioned rats, and analyzed at 6, 18, and 24 weeks for a time-course evaluation of specificity and extent of graft-derived fiber outgrowth as well as potential for functional recovery. To investigate synaptic integration of the transplanted cells, we used rabies-based monosynaptic tracing to reveal the origin and extent of host presynaptic inputs to grafts at 6 weeks. The results reveal the capacity of grafted neurons to extend axonal projections toward appropriate forebrain target structures progressively over 24 weeks. The timing and extent of graft-derived dopaminergic fibers innervating the dorsolateral striatum matched reduction in amphetamine-induced rotational asymmetry in the animals where recovery could be observed. Monosynaptic tracing demonstrated that grafted cells integrate with host circuitry 6 weeks after transplantation, in a manner that is comparable with endogenous midbrain connectivity. Thus, we demonstrate that VM patterned hESC-derived progenitors grafted to midbrain have the capacity to extensively innervate appropriate forebrain targets, integrate into the host circuitry and that functional recovery can be achieved when grafting fetal or hESC-derived DA neurons to the midbrain.


Assuntos
Neurônios Dopaminérgicos/fisiologia , Neurônios Dopaminérgicos/transplante , Mesencéfalo/cirurgia , Vias Neurais/fisiologia , Células-Tronco Neurais/fisiologia , Células-Tronco Neurais/transplante , Transtornos Parkinsonianos/cirurgia , Prosencéfalo/fisiologia , Sinapses/fisiologia , Anfetamina/farmacologia , Animais , Inibidores da Captação de Dopamina/farmacologia , Feminino , Humanos , Hidroxidopaminas , Camundongos , Fibras Nervosas/fisiologia , Transtornos Parkinsonianos/induzido quimicamente , Ratos Nus , Transplante de Células-Tronco , Comportamento Estereotipado/efeitos dos fármacos
7.
Proc Natl Acad Sci U S A ; 114(39): E8284-E8293, 2017 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-28900002

RESUMO

Although a causative role of α-synuclein (α-syn) is well established in Parkinson's disease pathogenesis, available animal models of synucleinopathy do not replicate the full range of cellular and behavioral changes characteristic of the human disease. This study was designed to generate a more faithful model of Parkinson's disease by injecting human α-syn fibril seeds into the rat substantia nigra (SN), in combination with adenoassociated virus (AAV)-mediated overexpression of human α-syn, at levels that, by themselves, are unable to induce acute dopamine (DA) neurodegeneration. We show that the ability of human α-syn fibrils to trigger Lewy-like α-synuclein pathology in the affected DA neurons is dramatically enhanced in the presence of elevated levels of human α-syn. This synucleinopathy was fully developed already 10 days after fibril injection, accompanied by progressive degeneration of dopaminergic neurons in SN, neuritic swelling, reduced striatal DA release, and impaired motor behavior. Moreover, a prominent inflammatory response involving both activation of resident microglia and infiltration of CD4+ and CD8+ T lymphocytes was observed. Hypertrophic microglia were found to enclose or engulf cells and processes containing Lewy-like α-syn aggregates. α-Syn aggregates were also observed inside these cells, suggesting transfer of phosphorylated α-syn from the affected nigral neurons. The nigral pathology triggered by fibrils in combination with AAV-mediated overexpression of α-syn reproduced many of the cardinal features of the human disease. The short time span and the distinct sequence of pathological and degenerative changes make this combined approach attractive as an experimental model for the assessment of neuroprotective and disease-modifying strategies.


Assuntos
Linfócitos T CD4-Positivos/metabolismo , Linfócitos T CD8-Positivos/metabolismo , Neurônios Dopaminérgicos/metabolismo , Microglia/metabolismo , Doença de Parkinson/metabolismo , Substância Negra/metabolismo , alfa-Sinucleína/toxicidade , Animais , Linfócitos T CD4-Positivos/patologia , Linfócitos T CD8-Positivos/patologia , Modelos Animais de Doenças , Neurônios Dopaminérgicos/patologia , Humanos , Microglia/patologia , Doença de Parkinson/patologia , Ratos , Substância Negra/patologia
8.
Neuron ; 90(5): 955-68, 2016 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-27161524

RESUMO

Transplantation of DA neurons is actively pursued as a restorative therapy in Parkinson's disease (PD). Pioneering clinical trials using transplants of fetal DA neuroblasts have given promising results, although a number of patients have developed graft-induced dyskinesias (GIDs), and the mechanism underlying this troublesome side effect is still unknown. Here we have used a new model where the activity of the transplanted DA neurons can be selectively modulated using a bimodal chemogenetic (DREADD) approach, allowing either enhancement or reduction of the therapeutic effect. We show that exclusive activation of a cAMP-linked (Gs-coupled) DREADD or serotonin 5-HT6 receptor, located on the grafted DA neurons, is sufficient to induce GIDs. These findings establish a mechanistic link between the 5-HT6 receptor, intracellular cAMP, and GIDs in transplanted PD patients. This effect is thought to be mediated through counteraction of the D2 autoreceptor feedback inhibition, resulting in a dysplastic DA release from the transplant.


Assuntos
Neurônios Dopaminérgicos/transplante , Discinesia Induzida por Medicamentos/fisiopatologia , Transplante de Tecido Fetal/efeitos adversos , Transtornos Parkinsonianos/metabolismo , Receptores de Serotonina/fisiologia , Animais , Clozapina/análogos & derivados , Clozapina/farmacologia , AMP Cíclico/metabolismo , Diterpenos/farmacologia , Diterpenos Clerodânicos , Dopamina/metabolismo , Neurônios Dopaminérgicos/efeitos dos fármacos , Neurônios Dopaminérgicos/metabolismo , Etilaminas/farmacologia , Feminino , Técnicas de Introdução de Genes , Humanos , Indóis/farmacologia , Oxidopamina , Transtornos Parkinsonianos/cirurgia , Complicações Pós-Operatórias , Ratos , Receptores de Serotonina/biossíntese , Receptores de Serotonina/efeitos dos fármacos
9.
Sci Rep ; 6: 26285, 2016 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-27211987

RESUMO

We studied the impact of α-synuclein overexpression in brainstem serotonin neurons using a novel vector construct where the expression of human wildtype α-synuclein is driven by the tryptophan hydroxylase promoter, allowing expression of α-synuclein at elevated levels, and with high selectivity, in serotonergic neurons. α-Synuclein induced degenerative changes in axons and dendrites, displaying a distorted appearance, suggesting accumulation and aggregation of α-synuclein as a result of impaired axonal transport, accompanied by a 40% loss of terminals, as assessed in the hippocampus. Tissue levels of serotonin and its major metabolite 5-HIAA remained largely unaltered, and the performance of the α-synuclein overexpressing rats in tests of spatial learning (water maze), anxiety related behavior (elevated plus maze) and depressive-like behavior (forced swim test) was not different from control, suggesting that the impact of the developing axonal pathology on serotonin neurotransmission was relatively mild. Overexpression of α-synuclein in the raphe nuclei, combined with overexpression in basal forebrain cholinergic neurons, resulted in more pronounced axonal pathology and significant impairment in the elevated plus maze. We conclude that α-synuclein pathology in serotonergic or cholinergic neurons alone is not sufficient to impair non-motor behaviors, but that it is their simultaneous involvement that determines severity of such symptoms.


Assuntos
Tronco Encefálico/metabolismo , Tronco Encefálico/patologia , Neurônios Serotoninérgicos/metabolismo , Neurônios Serotoninérgicos/patologia , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo , Animais , Comportamento Animal , Tronco Encefálico/fisiopatologia , Neurônios Colinérgicos/metabolismo , Neurônios Colinérgicos/patologia , Dependovirus/genética , Feminino , Vetores Genéticos , Humanos , Aprendizagem em Labirinto , Degeneração Neural/metabolismo , Degeneração Neural/patologia , Regiões Promotoras Genéticas , Núcleos da Rafe/metabolismo , Núcleos da Rafe/patologia , Núcleos da Rafe/fisiopatologia , Ratos , Ratos Sprague-Dawley , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Triptofano Hidroxilase/genética , Regulação para Cima
10.
Proc Natl Acad Sci U S A ; 110(19): E1817-26, 2013 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-23610405

RESUMO

The aggregation of α-synuclein plays a major role in Parkinson disease (PD) pathogenesis. Recent evidence suggests that defects in the autophagy-mediated clearance of α-synuclein contribute to the progressive loss of nigral dopamine neurons. Using an in vivo model of α-synuclein toxicity, we show that the PD-like neurodegenerative changes induced by excess cellular levels of α-synuclein in nigral dopamine neurons are closely linked to a progressive decline in markers of lysosome function, accompanied by cytoplasmic retention of transcription factor EB (TFEB), a major transcriptional regulator of the autophagy-lysosome pathway. The changes in lysosomal function, observed in the rat model as well as in human PD midbrain, were reversed by overexpression of TFEB, which afforded robust neuroprotection via the clearance of α-synuclein oligomers, and were aggravated by microRNA-128-mediated repression of TFEB in both A9 and A10 dopamine neurons. Delayed activation of TFEB function through inhibition of mammalian target of rapamycin blocked α-synuclein induced neurodegeneration and further disease progression. The results provide a mechanistic link between α-synuclein toxicity and impaired TFEB function, and highlight TFEB as a key player in the induction of α-synuclein-induced toxicity and PD pathogenesis, thus identifying TFEB as a promising target for therapies aimed at neuroprotection and disease modification in PD.


Assuntos
Autofagia , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/fisiologia , Mesencéfalo/patologia , Neurônios/metabolismo , alfa-Sinucleína/metabolismo , Animais , Proteínas Reguladoras de Apoptose/biossíntese , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Proteína Beclina-1 , Encéfalo/metabolismo , Mapeamento Encefálico/métodos , Dependovirus , Dopamina , Feminino , Células HEK293 , Humanos , Imuno-Histoquímica , Lisossomos/metabolismo , Fármacos Neuroprotetores/farmacologia , Doença de Parkinson/metabolismo , Doença de Parkinson/patologia , Ligação Proteica , Ratos , Ratos Sprague-Dawley
11.
PLoS One ; 7(6): e39465, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22737239

RESUMO

Several people with Parkinson's disease have been treated with intrastriatal grafts of fetal dopaminergic neurons. Following autopsy, 10-22 years after surgery, some of the grafted neurons contained Lewy bodies similar to those observed in the host brain. Numerous studies have attempted to explain these findings in cell and animal models. In cell culture, α-synuclein has been found to transfer from one cell to another, via mechanisms that include exosomal transport and endocytosis, and in certain cases seed aggregation in the recipient cell. In animal models, transfer of α-synuclein from host brain cells to grafted neurons has been shown, but the reported frequency of the event has been relatively low and little is known about the underlying mechanisms as well as the fate of the transferred α-synuclein. We now demonstrate frequent transfer of α-synuclein from a rat brain engineered to overexpress human α-synuclein to grafted dopaminergic neurons. Further, we show that this model can be used to explore mechanisms underlying cell-to-cell transfer of α-synuclein. Thus, we present evidence both for the involvement of endocytosis in α-synuclein uptake in vivo, and for seeding of aggregation of endogenous α-synuclein in the recipient neuron by the transferred α-synuclein. Finally, we show that, at least in a subset of the studied cells, the transmitted α-synuclein is sensitive to proteinase K. Our new model system could be used to test compounds that inhibit cell-to-cell transfer of α-synuclein and therefore might retard progression of Parkinson neuropathology.


Assuntos
Neurônios Dopaminérgicos/metabolismo , Regulação da Expressão Gênica , Corpos de Lewy/metabolismo , alfa-Sinucleína/metabolismo , Animais , Encéfalo/metabolismo , Comunicação Celular , Sobrevivência Celular , Modelos Animais de Doenças , Dopamina/metabolismo , Endopeptidase K/metabolismo , Feminino , Humanos , Doença de Parkinson/metabolismo , Fosforilação , Ratos , Ratos Sprague-Dawley
12.
Proc Natl Acad Sci U S A ; 109(9): 3213-9, 2012 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-22315428

RESUMO

We used in vivo amperometry to monitor changes in synaptic dopamine (DA) release in the striatum induced by overexpression of human wild-type α-synuclein in nigral DA neurons, induced by injection of an adeno-associated virus type 6 (AAV6)-α-synuclein vector unilaterally into the substantia nigra in adult rats. Impairments in DA release evolved in parallel with the development of degenerative changes in the nigrostriatal axons and terminals. The earliest change, seen 10 d after vector injection, was a marked, ≈50%, reduction in DA reuptake, consistent with an early dysfunction of the DA transporter that developed before any overt signs of axonal damage. At 3 wk, when the first signs of axonal damage were observed, the amount of DA released after a KCl pulse was reduced by 70-80%, and peak DA concentration was delayed, indicating an impaired release mechanism. At later time points, 8-16 wk, overall striatal innervation density was reduced by 60-80% and accompanied by abundant signs of axonal damage in the form of α-synuclein aggregates, axonal swellings, and dystrophic axonal profiles. At this stage DA release and reuptake were profoundly reduced, by 80-90%. The early changes in synaptic DA release induced by overexpression of human α-synuclein support the idea that early predegenerative changes in the handling of DA may initiate, and drive, a progressive degenerative process that hits the axons and terminals first. Synaptic dysfunction and axonopathy would thus be the hallmark of presymptomatic and early-stage Parkinson disease, followed by neuronal degeneration and cell loss, characteristic of more advanced stages of the disease.


Assuntos
Dopamina/metabolismo , Neurônios Dopaminérgicos/metabolismo , Substância Negra/citologia , Transmissão Sináptica/fisiologia , alfa-Sinucleína/toxicidade , Animais , Axônios/ultraestrutura , Núcleo Caudado/patologia , Dependovirus/genética , Inibidores da Captação de Dopamina/farmacologia , Neurônios Dopaminérgicos/patologia , Relação Dose-Resposta a Droga , Eletrodos Implantados , Feminino , Vetores Genéticos/genética , Vetores Genéticos/toxicidade , Humanos , Microinjeções , Nomifensina/farmacologia , Potássio/farmacologia , Putamen/patologia , Ratos , Ratos Sprague-Dawley , Proteínas Recombinantes de Fusão/toxicidade , Transgenes , Regulação para Cima , alfa-Sinucleína/biossíntese , alfa-Sinucleína/genética
13.
Brain ; 134(Pt 8): 2302-11, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21712347

RESUMO

The neuroprotective effect of the glial cell line-derived neurotrophic factor has been extensively studied in various toxic models of Parkinson's disease. However, it remains unclear whether this neurotrophic factor can protect against the toxicity induced by the aggregation-prone protein α-synuclein. Targeted overexpression of human wild-type α-synuclein in the nigrostriatal system, using adeno-associated viral vectors, causes a progressive degeneration of the nigral dopamine neurons and the development of axonal pathology in the striatum. In the present study, we investigated, using different paradigms of delivery, whether glial cell line-derived neurotrophic factor can protect against the neurodegenerative changes and the cellular stress induced by α-synuclein. We found that viral vector-mediated delivery of glial cell line-derived neurotrophic factor into substantia nigra and/or striatum, administered 2-3 weeks before α-synuclein, was inefficient in preventing the wild-type α-synuclein-induced loss of dopamine neurons and terminals. In addition, glial cell line-derived neurotrophic factor overexpression did not ameliorate the behavioural deficit in this rat model of Parkinson's disease. Quantification of striatal α-synuclein-positive aggregates revealed that glial cell line-derived neurotrophic factor had no effect on α-synuclein aggregation. These data provide the evidence for the lack of neuroprotective effect of glial cell line-derived neurotrophic factor against the toxicity of human wild-type α-synuclein in an in vivo model of Parkinson's disease. The difference in neuroprotective efficacy of glial cell line-derived neurotrophic factor seen in our model and the commonly used neurotoxin models of Parkinson's disease, raises important issues pertinent to the interpretation of the results obtained in preclinical models of Parkinson's disease, and their relevance for the therapeutic use glial cell line-derived neurotrophic factor in patients with Parkinson's disease.


Assuntos
Fator Neurotrófico Derivado de Linhagem de Célula Glial/administração & dosagem , Proteínas de Filamentos Intermediários/metabolismo , Doenças Neurodegenerativas/prevenção & controle , Anfetamina/farmacologia , Animais , Animais Geneticamente Modificados , Contagem de Células , Corpo Estriado/efeitos dos fármacos , Corpo Estriado/metabolismo , Modelos Animais de Doenças , Dopaminérgicos/farmacologia , Ensaio de Imunoadsorção Enzimática/métodos , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/genética , Vetores Genéticos/fisiologia , Fator Neurotrófico Derivado de Linhagem de Célula Glial/genética , Proteínas de Fluorescência Verde/genética , Humanos , Proteínas de Filamentos Intermediários/genética , Doenças Neurodegenerativas/etiologia , Doença de Parkinson/complicações , Ratos , Ratos Sprague-Dawley , Estatísticas não Paramétricas , Substância Negra/efeitos dos fármacos , Substância Negra/metabolismo , Proteínas Vesiculares de Transporte de Monoamina/metabolismo
14.
Eur J Neurosci ; 31(12): 2266-78, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20529122

RESUMO

Despite the widespread use of mice as models of Parkinson's disease there is a surprising lack of validation and characterisation of unilateral lesion models in mice and the extent of behavioural impairments induced by such lesions. The aim of the present study was to characterise the behavioural deficits observed after injection of 6-hydroxydopamine unilaterally into the substantia nigra, and correlate the behavioural impairments with the extent of damage to the mesostriatal dopaminergic pathway. We found that a recently introduced test for assessment of sensorimotor impairment, the corridor task, was particularly useful in determining lesion severity, and that this test, in combination with standard drug-induced rotation tests, can be used to select animals with profound (> or = 80%) dopaminergic lesions that are stable over time. Based on these data we propose criteria that can be used to predict the extent of lesion, classified as severe, intermediate or mild lesions of the mesostriatal pathway. The correlation of cell loss and striatal innervation with the performance in each test provides a useful tool for the assessment of functional recovery in neurorestoration and cell transplantation studies, and for the evaluation of the in vivo efficacy and performance of stem cell-derived dopamine neuron preparations.


Assuntos
Comportamento Animal/efeitos dos fármacos , Oxidopamina/farmacologia , Doença de Parkinson , Substância Negra , Simpatolíticos/farmacologia , Anfetamina/farmacologia , Animais , Apomorfina/farmacologia , Modelos Animais de Doenças , Dopamina/metabolismo , Dopaminérgicos/farmacologia , Agonistas de Dopamina/farmacologia , Feminino , Camundongos , Degeneração Neural/metabolismo , Degeneração Neural/patologia , Vias Neurais/metabolismo , Vias Neurais/patologia , Testes Neuropsicológicos , Doença de Parkinson/patologia , Doença de Parkinson/fisiopatologia , Substância Negra/metabolismo , Substância Negra/patologia , Substância Negra/fisiopatologia
15.
J Clin Nurs ; 19(5-6): 840-6, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20500327

RESUMO

AIM: The aim of this study was to explore how health care professionals perceive the well-being of patients and relatives following open-heart surgery. BACKGROUND: Open-heart surgery is an extraordinary life event associated with hope and fear among both patients and relatives, thus they require attention from health care professionals. Patients' short stay in hospital after surgery and the workload of health care professionals increase the risk that reduced well-being will be overlooked. Health care professionals need to become familiar with the signs of reduced well-being. DESIGN: The study has an observational design and was performed using a qualitative method. METHOD: Health care professionals working with patients who have undergone open-heart surgery participated in focus group discussions. The data were analysed by means of content analysis. RESULTS: Two categories emerged: signs of vulnerability and signs of insecurity. The latent meaning of the study was interpreted as awareness of an exposed position. CONCLUSION: The health care professionals were aware of patients' and relatives' exposed position following open-heart surgery. Reduced well-being was communicated by bodily and emotional signs, which were captured using direct communication or intuition. RELEVANCE TO CLINICAL PRACTICE: Developing the ability to recognise signs of reduced well-being is important for minimising the negative influences associated with open-heart surgery for patients and relatives. Increased awareness that both anger and avoidance can mask depression is important. Patients and their relatives, particularly younger ones, should be observed to ensure early detection of a life crisis provoked by the heart disease. Furthermore, staff should invite patients and their partners to talk about sexuality. Changes aimed at increasing patients' and relatives' well-being would be facilitated by interdisciplinary teamwork, 'reflection groups' for a greater exchange of knowledge and the implementation of a patient/family perspective. The latter would lead to greater interest in the relatives' situation and position in cardiac care.


Assuntos
Procedimentos Cirúrgicos Cardíacos , Família/psicologia , Pacientes/psicologia , Satisfação Pessoal , Atitude do Pessoal de Saúde , Feminino , Grupos Focais , Humanos , Masculino , Qualidade de Vida
16.
Exp Neurol ; 222(1): 70-85, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20025873

RESUMO

Viral vector-mediated gene transfer has emerged as a powerful means to target transgene expression in the central nervous system. Here we characterized the efficacy of serotypes 1 and 5 recombinant adeno-associated virus (rAAV) vectors encoding green fluorescent protein (GFP) after stereotaxic delivery to the neonatal rat and minipig striatum. The efficiency of GFP expression and the phenotype of GFP-positive cells were assessed within the forebrain at different time points up to 12 months after surgery. Both rAAV1-GFP and rAAV5-GFP delivery resulted in transduction of the striatum as well as striatal input and output areas, including large parts of the cortex. In both species, rAAV5 resulted in a more widespread transgene expression compared to rAAV1. In neonatal rats, rAAV5 also transduced several other areas such as the olfactory bulbs, hippocampus, and septum. Phenotypic analysis of the GFP-positive cells, performed using immunohistochemistry and confocal microscopy, showed that most of the GFP-positive cells by either serotype were NeuN-positive neuronal profiles. The rAAV5 vector further displayed the ability to transduce non-neuronal cell types in both rats and pigs, albeit at a low frequency. Our results show that striatal delivery of rAAV5 vectors in the neonatal brain represents a useful tool to express genes of interest both in the basal ganglia and the neocortex. Furthermore, we apply, for the first time, viral vector-mediated gene transfer to the pig brain providing the opportunity to study effects of genetic manipulation in this non-primate large animal species. Finally, we generated an atlas of the Göttingen minipig brain for guiding future studies in this large animal species.


Assuntos
Dependovirus/classificação , Dependovirus/genética , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Vetores Genéticos/fisiologia , Prosencéfalo/metabolismo , Animais , Animais Recém-Nascidos , Linhagem Celular Transformada , Corpo Estriado/citologia , Corpo Estriado/crescimento & desenvolvimento , Corpo Estriado/metabolismo , Fosfoproteína 32 Regulada por cAMP e Dopamina/genética , Fosfoproteína 32 Regulada por cAMP e Dopamina/metabolismo , Vetores Genéticos/genética , Proteínas de Fluorescência Verde/genética , Humanos , Microscopia Confocal/métodos , Microscopia Eletrônica de Transmissão/métodos , Neurônios/citologia , Neurônios/metabolismo , Neurônios/ultraestrutura , Fosfopiruvato Hidratase/metabolismo , Prosencéfalo/citologia , Ratos , Ratos Sprague-Dawley , Suínos , Fatores de Tempo , Transdução Genética/métodos , Transfecção/métodos
17.
J Neurosci ; 29(50): 15923-32, 2009 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-20016108

RESUMO

Transcription factors involved in the specification and differentiation of neurons often continue to be expressed in the adult brain, but remarkably little is known about their late functions. Nurr1, one such transcription factor, is essential for early differentiation of midbrain dopamine (mDA) neurons but continues to be expressed into adulthood. In Parkinson's disease, Nurr1 expression is diminished and mutations in the Nurr1 gene have been identified in rare cases of disease; however, the significance of these observations remains unclear. Here, a mouse strain for conditional targeting of the Nurr1 gene was generated, and Nurr1 was ablated either at late stages of mDA neuron development by crossing with mice carrying Cre under control of the dopamine transporter locus or in the adult brain by transduction of adeno-associated virus Cre-encoding vectors. Nurr1 deficiency in maturing mDA neurons resulted in rapid loss of striatal DA, loss of mDA neuron markers, and neuron degeneration. In contrast, a more slowly progressing loss of striatal DA and mDA neuron markers was observed after ablation in the adult brain. As in Parkinson's disease, neurons of the substantia nigra compacta were more vulnerable than cells in the ventral tegmental area when Nurr1 was ablated at late embryogenesis. The results show that developmental pathways play key roles for the maintenance of terminally differentiated neurons and suggest that disrupted function of Nurr1 and other developmental transcription factors may contribute to neurodegenerative disease.


Assuntos
Mesencéfalo/citologia , Mesencéfalo/crescimento & desenvolvimento , Neurônios/citologia , Neurônios/fisiologia , Membro 2 do Grupo A da Subfamília 4 de Receptores Nucleares/fisiologia , Fatores Etários , Animais , Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/fisiologia , Feminino , Marcação de Genes , Integrases/genética , Mesencéfalo/fisiologia , Camundongos , Camundongos Transgênicos , Neurogênese/genética , Membro 2 do Grupo A da Subfamília 4 de Receptores Nucleares/deficiência , Membro 2 do Grupo A da Subfamília 4 de Receptores Nucleares/genética , Gravidez
18.
Planta ; 228(4): 589-99, 2008 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-18563438

RESUMO

Few microscopical studies have been made on lipid storage in oat grains, with variable results as to the extent of lipid accumulation in the starchy endosperm. Grains of medium- and high-lipid oat (Avena sativa L.) were studied at two developmental stages and at maturity, by light microscopy using different staining methods, and by scanning and transmission electron microscopy. Discrete oil bodies occurred in the aleurone layer, scutellum and embryo. In contrast, oil bodies in the starchy endosperm often had diffuse boundaries and fused with each other and with protein vacuoles during grain development, forming a continuous oil matrix between the protein and starch components. The different microscopical methods were confirmative to each other regarding the coalescence of oil bodies, a phenomenon probably correlated with the reduced amount of oil-body associated proteins in the endosperm. This was supported experimentally by SDS-PAGE separation of oil-body proteins and immunoblotting and immunolocalization with antibodies against a 16 kD oil-body protein. Much more oil-body proteins per amount of oil occurred in the embryo and scutellum than in the endosperm. Immunolocalization of 14 and 16 kD oil-body associated proteins on sectioned grains resulted in more heavy labeling of the embryo, scutellum and aleurone layer than the rest of the endosperm. Observations on the appearance of oil bodies at an early stage of development pertain to the prevailing hypotheses of oil-body biogenesis.


Assuntos
Avena/citologia , Lipídeos/biossíntese , Óleos de Plantas , Sementes/citologia , Avena/ultraestrutura , Eletroforese em Gel de Poliacrilamida , Lipídeos/análise , Microscopia Eletrônica , Óleos de Plantas/química , Proteínas de Plantas/análise , Sementes/ultraestrutura , Coloração e Rotulagem
20.
J Cereb Blood Flow Metab ; 22(7): 852-60, 2002 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-12142570

RESUMO

The study aimed to elucidate the effects of cortical ischemia and postischemic environmental enrichment on hippocampal cell genesis. A cortical infarct was induced by a permanent ligation of the middle cerebral artery distal to the striatal branches in 6-month-old spontaneously hypertensive rats. Bromodeoxyuridine (BrdU) was administered as 7 consecutive daily injections starting 24 hours after surgery and animals were housed in standard or enriched environment. Four weeks after completed BrdU administration, BrdU incorporation and its co-localization with the neuronal markers NeuN and calbindin D28k, and the astrocytic marker glial fibrillary acidic protein in the granular cell layer and subgranular zone of the hippocampal dentate gyrus were determined with immunohistochemistry and were quantified stereologically. Compared with sham-operated rats, rats with cortical infarcts had a five-to sixfold ipsilateral increase in BrdU-labeled cells. About 80% of the new cells were neurons. Differential postischemic housing did not influence significantly the total number of surviving BrdU-labeled cells or newborn neurons. However, postischemic environmental enrichment increased the ipsilateral generation of astrocytes normalizing the astrocyte-to-neuron ratio, which was significantly reduced in rats housed in standard environment postischemically.


Assuntos
Isquemia Encefálica/patologia , Diferenciação Celular , Hipocampo/patologia , Animais , Animais Recém-Nascidos , Astrócitos/química , Astrócitos/patologia , Biomarcadores/análise , Infarto Encefálico/patologia , Bromodesoxiuridina/análise , Bromodesoxiuridina/metabolismo , Calbindina 1 , Calbindinas , Imunofluorescência , Proteína Glial Fibrilar Ácida/análise , Imuno-Histoquímica , Masculino , Neurônios/química , Neurônios/patologia , Fenótipo , Ratos , Ratos Endogâmicos SHR , Proteína G de Ligação ao Cálcio S100/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA