Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Med Chem ; 65(20): 13946-13966, 2022 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-36201615

RESUMO

The management of patients with type 2 diabetes mellitus (T2DM) is shifting from cardio-centric to weight-centric or, even better, adipose-centric treatments. Considering the downsides of multidrug therapies and the relevance of dipeptidyl peptidase IV (DPP IV) and carbonic anhydrases (CAs II and V) in T2DM and in the weight loss, we report a new class of multitarget ligands targeting the mentioned enzymes. We started from the known α1-AR inhibitor WB-4101, which was progressively modified through a tailored morphing strategy to optimize the potency of DPP IV and CAs while losing the adrenergic activity. The obtained compound 12 shows a satisfactory DPP IV inhibition with a good selectivity CA profile (DPP IV IC50: 0.0490 µM; CA II Ki 0.2615 µM; CA VA Ki 0.0941 µM; CA VB Ki 0.0428 µM). Furthermore, its DPP IV inhibitory activity in Caco-2 and its acceptable pre-ADME/Tox profile indicate it as a lead compound in this novel class of multitarget ligands.


Assuntos
Anidrases Carbônicas , Diabetes Mellitus Tipo 2 , Inibidores da Dipeptidil Peptidase IV , Humanos , Dipeptidil Peptidase 4 , Diabetes Mellitus Tipo 2/tratamento farmacológico , Inibidores da Anidrase Carbônica/farmacologia , Inibidores da Anidrase Carbônica/uso terapêutico , Células CACO-2 , Ligantes , Adrenérgicos , Inibidores da Dipeptidil Peptidase IV/farmacologia , Inibidores da Dipeptidil Peptidase IV/uso terapêutico , Hipoglicemiantes/farmacologia
2.
Eur J Pharmacol ; 883: 173183, 2020 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-32534072

RESUMO

Although agonists and antagonists of muscarinic receptors have been known for long time, there is renewed interest in compounds (such as allosteric or bitopic ligands, or biased agonists) able to differently and selectively modulate these receptors. As a continuation of our previous research, we designed a new series of dimers of the well-known cholinergic agonist carbachol. The new compounds were tested on the five cloned human muscarinic receptors (hM1-5) expressed in CHO cells by means of equilibrium binding experiments, showing a dependence of the binding affinity on the length and position of the linker connecting the two monomers. Kinetic binding studies revealed that some of the tested compounds were able to slow the rate of NMS dissociation, suggesting allosteric behavior, also supported by docking simulations. Assessment of ERK1/2 phosphorylation on hM1, hM2 and hM3 activation showed that the new compounds are endowed with muscarinic antagonist properties. At hM2 receptors, some compounds were able to stimulate GTPγS binding but not cAMP accumulation, suggesting a biased behavior. Classification, Molecular and cellular pharmacology.


Assuntos
Carbacol/farmacologia , Agonistas Muscarínicos/farmacologia , Antagonistas Muscarínicos/farmacologia , Receptores Muscarínicos/efeitos dos fármacos , Animais , Células CHO , Carbacol/química , Carbacol/metabolismo , Cricetulus , AMP Cíclico/metabolismo , Dimerização , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Guanosina 5'-O-(3-Tiotrifosfato)/metabolismo , Humanos , Cinética , Simulação de Acoplamento Molecular , Estrutura Molecular , Agonistas Muscarínicos/química , Agonistas Muscarínicos/metabolismo , Antagonistas Muscarínicos/química , Antagonistas Muscarínicos/metabolismo , Fosforilação , Ligação Proteica , Receptores Muscarínicos/genética , Receptores Muscarínicos/metabolismo , Transdução de Sinais , Relação Estrutura-Atividade
3.
J Med Chem ; 63(11): 5763-5782, 2020 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-32374602

RESUMO

A series of novel 1,4-dioxane analogues of the muscarinic acetylcholine receptor (mAChR) antagonist 2 was synthesized and studied for their affinity at M1-M5 mAChRs. The 6-cyclohexyl-6-phenyl derivative 3b, with a cis configuration between the CH2N+(CH3)3 chain in the 2-position and the cyclohexyl moiety in the 6-position, showed pKi values for mAChRs higher than those of 2 and a selectivity profile analogous to that of the clinically approved drug oxybutynin. The study of the enantiomers of 3b and the corresponding tertiary amine 33b revealed that the eutomers are (2S,6S)-(-)-3b and (2S,6S)-(-)-33b, respectively. Docking simulations on the M3 mAChR-resolved structure rationalized the experimental observations. The quaternary ammonium function, which should prevent the crossing of the blood-brain barrier, and the high M3/M2 selectivity, which might limit cardiovascular side effects, make 3b a valuable starting point for the design of novel antagonists potentially useful in peripheral diseases in which M3 receptors are involved.


Assuntos
Dioxanos/química , Antagonistas Muscarínicos/química , Receptores Muscarínicos/química , Animais , Sítios de Ligação , Sobrevivência Celular/efeitos dos fármacos , Cristalografia por Raios X , Desenho de Fármacos , Masculino , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Conformação Molecular , Simulação de Acoplamento Molecular , Antagonistas Muscarínicos/metabolismo , Antagonistas Muscarínicos/farmacologia , Estrutura Terciária de Proteína , Receptor Muscarínico M2/antagonistas & inibidores , Receptor Muscarínico M2/metabolismo , Receptor Muscarínico M3/antagonistas & inibidores , Receptor Muscarínico M3/metabolismo , Receptores Muscarínicos/metabolismo , Relação Estrutura-Atividade
4.
Front Cell Neurosci ; 11: 339, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29163051

RESUMO

The degeneration of cholinergic neurons of the nucleus basalis of Meynert (NBM) in the basal forebrain (BF) is associated to the cognitive decline of Alzheimer's disease (AD) patients. To date no resolutive therapies exist. Cell-based replacement therapy is a strategy currently under consideration, although the mechanisms underlying the generation of stem cell-derived NBM cholinergic neurons able of functional integration remain to be clarified. Since fetal brain is an optimal source of neuronal cells committed towards a specific phenotype, this study is aimed at isolating cholinergic neurons from the human fetal NBM (hfNBMs) in order to study their phenotypic, maturational and functional properties. Extensive characterization confirmed the cholinergic identity of hfNBMs, including positivity for specific markers (such as choline acetyltransferase) and acetylcholine (Ach) release. Electrophysiological measurements provided the functional validation of hfNBM cells, which exhibited the activation of peculiar sodium (INa) and potassium (IK) currents, as well as the presence of functional cholinergic receptors. Accordingly, hfNBMs express both nicotinic and muscarinic receptors, which were activated by Ach. The hfNBMs cholinergic phenotype was regulated by the nerve growth factor (NGF), through the activation of the high-affinity NGF receptor TrkA, as well as by 17-ß-estradiol through a peculiar recruitment of its own receptors. When intravenously administered in NBM-lesioned rats, hfNBMs determined a significant improvement in memory functions. Histological examination of brain sections showed that hfNBMs (labeled with PKH26 fluorescent dye prior to administration) reached the damaged brain areas. The study provides a useful model to study the ontogenetic mechanisms regulating the development and maintenance of the human brain cholinergic system and to assess new lines of research, including disease modeling, drug discovery and cell-based therapy for AD.

5.
J Med Chem ; 47(24): 6070-81, 2004 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-15537361

RESUMO

Several compounds with a 4-aminopiperidine scaffold decorated on both nitrogen atoms by alkyl or acyl moieties containing the structural motifs of verapamil and of flunarizine, as well as those that are more frequent in known N-type calcium channel antagonists, have been synthesized. Antinociceptive activity on the mouse hot-plate test was used to select molecules to be submitted to further studies. Active compounds were tested in vitro on a PC12 rat pheochromocytoma clonal cell line, to evaluate their action on N-type calcium channels, and on a rat model of neuropathic pain. Two compounds that show N-type calcium channel antagonism and are endowed with potent action on pain and neuropathic pain (3 and 18) have been selected for further studies.


Assuntos
Analgésicos/síntese química , Butanonas/síntese química , Bloqueadores dos Canais de Cálcio/síntese química , Canais de Cálcio Tipo N/efeitos dos fármacos , Dor/tratamento farmacológico , Doenças do Sistema Nervoso Periférico/tratamento farmacológico , Piperidinas/síntese química , Analgésicos/química , Analgésicos/farmacologia , Animais , Sítios de Ligação , Butanonas/química , Butanonas/farmacologia , Cálcio/metabolismo , Bloqueadores dos Canais de Cálcio/química , Bloqueadores dos Canais de Cálcio/farmacologia , Canais de Cálcio Tipo N/metabolismo , Ventrículos Cerebrais/metabolismo , Desenho de Fármacos , Técnicas In Vitro , Masculino , Camundongos , Células PC12 , Medição da Dor , Limiar da Dor , Piperidinas/química , Piperidinas/farmacologia , Ensaio Radioligante , Ratos , Ratos Sprague-Dawley , Relação Estrutura-Atividade
6.
Biochem Pharmacol ; 63(11): 2063-8, 2002 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-12093484

RESUMO

Neuropeptide Y (NPY) is a neuropeptide with high distribution in the cardiovascular system of mammals, where it modulates heart and vessel contractility. In the rat heart, the presence of at least three different NPY receptor subtypes has been hypothesised. Notwithstanding this, receptor activation might not be the only mechanism responsible for the complex cardiac effects of the peptide. In this study, we investigated the effect of NPY on the GTPase activity of G-proteins in the rat left ventricle as a possible alternative mechanism of action for the peptide in the rat heart. Our results show that NPY, but also the neuropeptide fragment (18-36) (NPY (18-36)), stimulated the basal, spontaneous GTPase activity of ventricle membranes only when it was measured under the condition of an absence of Mg2+. This stimulation was resistant to BIBP3226 a non-peptidergic antagonist at Y1 receptors, but it was significantly reduced in membranes treated with selective antibodies against the Gialpha subunits. NPYs effect was concentration-dependent with a maximum of activity at 10nM. At this concentration, NPY (and NPY 18-36) was able to inhibit forskolin (FSK)-induced cyclic adenosine-5'-monophosphate (cAMP) elevation in rat left ventricle slices. Our results assess that NPY in the rat heart is able to activate the GTPase activity of Gi proteins, in a receptor-independent way.


Assuntos
Arginina/análogos & derivados , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/metabolismo , Neuropeptídeo Y/farmacologia , Animais , Anticorpos/farmacologia , Arginina/farmacologia , Membrana Celular/efeitos dos fármacos , Membrana Celular/enzimologia , Colforsina/farmacologia , AMP Cíclico/metabolismo , Interações Medicamentosas , GTP Fosfo-Hidrolases/metabolismo , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/imunologia , Guanosina Trifosfato/metabolismo , Ventrículos do Coração/efeitos dos fármacos , Ventrículos do Coração/enzimologia , Ventrículos do Coração/metabolismo , Hidrólise , Cinética , Masculino , Ratos , Ratos Wistar , Função Ventricular Esquerda/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA