Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cell Death Dis ; 13(9): 832, 2022 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-36171192

RESUMO

The transcription factor SNAI1 mediates epithelial-mesenchymal transition, fibroblast activation and controls inter-tissue migration. High SNAI1 expression characterizes metastatic triple-negative breast carcinomas, and its knockout by CRISPR/Cas9 uncovered an epithelio-mesenchymal phenotype accompanied by reduced signaling by the cytokine TGFß. The SNAI1 knockout cells exhibited plasticity in differentiation, drifting towards the luminal phenotype, gained stemness potential and could differentiate into acinar mammospheres in 3D culture. Loss of SNAI1 de-repressed the transcription factor FOXA1, a pioneering factor of mammary luminal progenitors. FOXA1 induced a specific gene program, including the androgen receptor (AR). Inhibiting AR via a specific antagonist regenerated the basal phenotype and blocked acinar differentiation. Thus, loss of SNAI1 in the context of triple-negative breast carcinoma cells promotes an intermediary luminal progenitor phenotype that gains differentiation plasticity based on the dual transcriptional action of FOXA1 and AR. This function of SNAI1 provides means to separate cell invasiveness from progenitor cell de-differentiation as independent cellular programs.


Assuntos
Neoplasias da Mama , Neoplasias de Mama Triplo Negativas , Linhagem Celular Tumoral , Plasticidade Celular/genética , Transição Epitelial-Mesenquimal/genética , Feminino , Humanos , Receptores Androgênicos/metabolismo , Fatores de Transcrição da Família Snail/genética , Fator de Crescimento Transformador beta , Neoplasias de Mama Triplo Negativas/genética
2.
Mol Oncol ; 12(7): 1153-1174, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29729076

RESUMO

Transcriptional regulation mediated by the zinc finger protein Snail1 controls early embryogenesis. By binding to the epithelial tumor suppressor CDH1 gene, Snail1 initiates the epithelial-mesenchymal transition (EMT). The EMT generates stem-like cells and promotes invasiveness during cancer progression. Accordingly, Snail1 mRNA and protein is abundantly expressed in triple-negative breast cancers with enhanced metastatic potential and phenotypic signs of the EMT. Such high endogenous Snail1 protein levels permit quantitative chromatin immunoprecipitation-sequencing (ChIP-seq) analysis. Snail1 associated with 185 genes at cis regulatory regions in the Hs578T triple-negative breast cancer cell model. These genes include morphogenetic regulators and signaling components that control polarized differentiation. Using the CRISPR/Cas9 system in Hs578T cells, a double deletion of 10 bp each was engineered into the first exon and into the second exon-intron junction of Snail1, suppressing Snail1 expression and causing misregulation of several hundred genes. Specific attention to regulators of chromatin organization provides a possible link to new phenotypes uncovered by the Snail1 loss-of-function mutation. On the other hand, genetic inactivation of Snail1 was not sufficient to establish a full epithelial transition to these tumor cells. Thus, Snail1 contributes to the malignant phenotype of breast cancer cells via diverse new mechanisms.


Assuntos
Genoma Humano , Fatores de Transcrição da Família Snail/metabolismo , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/metabolismo , Sequência de Bases , Proteína Morfogenética Óssea 6/metabolismo , Osso e Ossos/metabolismo , Linhagem Celular Tumoral , Movimento Celular/genética , Feminino , Regulação Neoplásica da Expressão Gênica , Técnicas de Inativação de Genes , Células HEK293 , Homeostase , Humanos , Mesoderma/metabolismo , Fenótipo , Ligação Proteica , Transcriptoma/genética
3.
J Cell Physiol ; 233(10): 7113-7127, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29744893

RESUMO

Zinc finger E-box binding homeobox 1 (ZEB1) is a transcriptional regulator involved in embryonic development and cancer progression. ZEB1 induces epithelial-mesenchymal transition (EMT). Triple-negative human breast cancers express high ZEB1 mRNA levels and exhibit features of EMT. In the human triple-negative breast cancer cell model Hs578T, ZEB1 associates with almost 2,000 genes, representing many cellular functions, including cell polarity regulation (DLG2 and FAT3). By introducing a CRISPR-Cas9-mediated 30 bp deletion into the ZEB1 second exon, we observed reduced migratory and anchorage-independent growth capacity of these tumor cells. Transcriptomic analysis of control and ZEB1 knockout cells, revealed 1,372 differentially expressed genes. The TIMP metallopeptidase inhibitor 3 and the teneurin transmembrane protein 2 genes showed increased expression upon loss of ZEB1, possibly mediating pro-tumorigenic actions of ZEB1. This work provides a resource for regulators of cancer progression that function under the transcriptional control of ZEB1. The data confirm that removing a single EMT transcription factor, such as ZEB1, is not sufficient for reverting the triple-negative mesenchymal breast cancer cells into more differentiated, epithelial-like clones, but can reduce tumorigenic potential, suggesting that not all pro-tumorigenic actions of ZEB1 are linked to the EMT.


Assuntos
Regulação Neoplásica da Expressão Gênica/genética , Neoplasias de Mama Triplo Negativas/genética , Homeobox 1 de Ligação a E-box em Dedo de Zinco/genética , Linhagem Celular Tumoral , Movimento Celular/genética , Transição Epitelial-Mesenquimal/genética , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Humanos , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
4.
Artigo em Inglês | MEDLINE | ID: mdl-28289061

RESUMO

Epithelial cells contribute to the development of various vital organs by generating tubular and/or glandular architectures. The fully developed forms of ductal organs depend on processes of branching morphogenesis, whereby frequency, total number, and complexity of the branching tissue define the final architecture in the organ. Some ductal tissues, like the mammary gland during pregnancy and lactation, disintegrate and regenerate through periodic cycles. Differentiation of branched epithelia is driven by antagonistic actions of parallel growth factor systems that mediate epithelial-mesenchymal communication. Transforming growth factor-ß (TGF-ß) family members and their extracellular antagonists are prominently involved in both normal and disease-associated (e.g., malignant or fibrotic) ductal tissue patterning. Here, we discuss collective knowledge that permeates the roles of TGF-ß family members in the control of the ductal tissues in the vertebrate body.


Assuntos
Morfogênese , Transdução de Sinais/fisiologia , Fator de Crescimento Transformador beta/fisiologia , Animais , Transição Epitelial-Mesenquimal , Feminino , Humanos , Pulmão/embriologia , Masculino , Glândulas Mamárias Animais/embriologia , Glândulas Mamárias Humanas/embriologia , Organogênese , Pâncreas/embriologia , Próstata/embriologia , Glândulas Salivares/embriologia
5.
Mol Cell ; 68(5): 847-859.e7, 2017 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-29220652

RESUMO

Human ALC1 is an oncogene-encoded chromatin-remodeling enzyme required for DNA repair that possesses a poly(ADP-ribose) (PAR)-binding macro domain. Its engagement with PARylated PARP1 activates ALC1 at sites of DNA damage, but the underlying mechanism remains unclear. Here, we establish a dual role for the macro domain in autoinhibition of ALC1 ATPase activity and coupling to nucleosome mobilization. In the absence of DNA damage, an inactive conformation of the ATPase is maintained by juxtaposition of the macro domain against predominantly the C-terminal ATPase lobe through conserved electrostatic interactions. Mutations within this interface displace the macro domain, constitutively activate the ALC1 ATPase independent of PARylated PARP1, and alter the dynamics of ALC1 recruitment at DNA damage sites. Upon DNA damage, binding of PARylated PARP1 by the macro domain induces a conformational change that relieves autoinhibitory interactions with the ATPase motor, which selectively activates ALC1 remodeling upon recruitment to sites of DNA damage.


Assuntos
Montagem e Desmontagem da Cromatina , Dano ao DNA , DNA Helicases/metabolismo , Reparo do DNA , Proteínas de Ligação a DNA/metabolismo , Nucleossomos/enzimologia , Domínio Catalítico , Linhagem Celular Tumoral , DNA Helicases/química , DNA Helicases/genética , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/genética , Ativação Enzimática , Humanos , Microscopia Eletrônica , Simulação de Dinâmica Molecular , Mutação , Nucleossomos/química , Poli(ADP-Ribose) Polimerase-1/química , Poli(ADP-Ribose) Polimerase-1/metabolismo , Poli ADP Ribosilação , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Transporte Proteico , Espalhamento a Baixo Ângulo , Eletricidade Estática , Relação Estrutura-Atividade , Fatores de Tempo , Difração de Raios X
6.
J Biol Chem ; 291(24): 12706-12723, 2016 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-27129221

RESUMO

We previously established a mechanism of negative regulation of transforming growth factor ß signaling mediated by the nuclear ADP-ribosylating enzyme poly-(ADP-ribose) polymerase 1 (PARP1) and the deribosylating enzyme poly-(ADP-ribose) glycohydrolase (PARG), which dynamically regulate ADP-ribosylation of Smad3 and Smad4, two central signaling proteins of the pathway. Here we demonstrate that the bone morphogenetic protein (BMP) pathway can also be regulated by the opposing actions of PARP1 and PARG. PARG positively contributes to BMP signaling and forms physical complexes with Smad5 and Smad4. The positive role PARG plays during BMP signaling can be neutralized by PARP1, as demonstrated by experiments where PARG and PARP1 are simultaneously silenced. In contrast to PARG, ectopic expression of PARP1 suppresses BMP signaling, whereas silencing of endogenous PARP1 enhances signaling and BMP-induced differentiation. The two major Smad proteins of the BMP pathway, Smad1 and Smad5, interact with PARP1 and can be ADP-ribosylated in vitro, whereas PARG causes deribosylation. The overall outcome of this mode of regulation of BMP signal transduction provides a fine-tuning mechanism based on the two major enzymes that control cellular ADP-ribosylation.


Assuntos
Adenosina Difosfato Ribose/metabolismo , Proteínas Morfogenéticas Ósseas/farmacologia , Proteínas de Ligação a DNA/metabolismo , Glicosídeo Hidrolases/metabolismo , Transdução de Sinais/efeitos dos fármacos , Animais , Linhagem Celular , Células Cultivadas , Proteínas de Ligação a DNA/genética , Expressão Gênica/efeitos dos fármacos , Glicosídeo Hidrolases/genética , Células HEK293 , Humanos , Immunoblotting , Camundongos Knockout , Ligação Proteica , Interferência de RNA , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais/genética , Proteína Smad4/genética , Proteína Smad4/metabolismo , Proteína Smad5/genética , Proteína Smad5/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA