Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Neuropsychopharmacology ; 48(4): 683-689, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36681758

RESUMO

The cholinergic system is a critical mediator of cognition in animals. People who smoke cigarettes exhibit cognitive deficits, especially during quit attempts. Few studies jointly examine the cholinergic system and cognition in people while trying to quit smoking. We used positron emission tomography (PET) brain imaging with the ß2-subunit containing nicotinic acetylcholine receptor (ß2*-nAChR) partial agonist radioligand (-)-[18F]flubatine and the acetylcholinesterase inhibitor physostigmine to jointly examine the cholinergic system, smoking status, and cognition. (-)-[18F]Flubatine scans and cognitive data were acquired from twenty people who recently stopped smoking cigarettes (aged 38 ± 11 years; 6 female, 14 male; abstinent 7 ± 1 days) and 27 people who never smoked cigarettes (aged 29 ± 8 years; 11 female, 16 male). A subset of fifteen recently abstinent smokers and 21 never smokers received a mid-scan physostigmine challenge to increase acetylcholine levels. Regional volume of distribution (VT) was estimated with equilibrium analysis at "baseline" and post-physostigmine. Participants completed a cognitive battery prior to (-)-[18F]flubatine injection and physostigmine administration assessing executive function (Groton Maze Learning test), verbal learning (International Shopping List test), and working memory (One Back test). Physostigmine significantly decreased cortical (-)-[18F]flubatine VT, consistent with increased cortical acetylcholine levels reducing the number of ß2*-nAChR sites available for (-)-[18F]flubatine binding, at comparable magnitudes across groups (p values < 0.05). A larger magnitude of physostigmine-induced decrease in (-)-[18F]flubatine VT was significantly associated with worse executive function in people who recently stopped smoking (p values < 0.05). These findings underscore the role of the cholinergic system in early smoking cessation and highlight the importance of neuroscience-informed treatment strategies.


Assuntos
Acetilcolina , Receptores Nicotínicos , Animais , Masculino , Feminino , Acetilcolina/metabolismo , Acetilcolinesterase , Fisostigmina , Tomografia por Emissão de Pósitrons/métodos , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Receptores Nicotínicos/metabolismo , Cognição , Colinérgicos , Fumar/efeitos adversos
2.
Brain Behav Immun ; 106: 262-269, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36058419

RESUMO

Immune-brain interactions influence the pathophysiology of addiction. Lipopolysaccharide (LPS)-induced systemic inflammation produces effects on reward-related brain regions and the dopamine system. We previously showed that LPS amplifies dopamine elevation induced by methylphenidate (MP), compared to placebo (PBO), in eight healthy controls. However, the effects of LPS on the dopamine system of tobacco smokers have not been explored. The goal of Study 1 was to replicate previous findings in an independent cohort of tobacco smokers. The goal of Study 2 was to combine tobacco smokers with the aforementioned eight healthy controls to examine the effect of LPS on dopamine elevation in a heterogenous sample for power and effect size determination. Eight smokers were each scanned with [11C]raclopride positron emission tomography three times-at baseline, after administration of LPS (0.8 ng/kg, intravenously) and MP (40 mg, orally), and after administration of PBO and MP, in a double-blind, randomized order. Dopamine elevation was quantified as change in [11C]raclopride binding potential (ΔBPND) from baseline. A repeated-measures ANOVA was conducted to compare LPS and PBO conditions. Smokers and healthy controls were well-matched for demographics, drug dosing, and scanning parameters. In Study 1, MP-induced striatal dopamine elevation was significantly higher following LPS than PBO (p = 0.025, 18 ± 2.9 % vs 13 ± 2.7 %) for smokers. In Study 2, MP-induced striatal dopamine elevation was also significantly higher under LPS than under PBO (p < 0.001, 18 ± 1.6 % vs 11 ± 1.5 %) in the combined sample. Smoking status did not interact with the effect of condition. This is the first study to translate the phenomenon of amplified dopamine elevation after experimental activation of the immune system to an addicted sample which may have implications for drug reinforcement, seeking, and treatment.


Assuntos
Estimulantes do Sistema Nervoso Central , Metilfenidato , Estimulantes do Sistema Nervoso Central/farmacologia , Corpo Estriado/diagnóstico por imagem , Corpo Estriado/metabolismo , Dopamina/metabolismo , Humanos , Inflamação/metabolismo , Lipopolissacarídeos/metabolismo , Metilfenidato/farmacologia , Tomografia por Emissão de Pósitrons , Racloprida/metabolismo , Racloprida/farmacologia , Fumantes
3.
Nicotine Tob Res ; 24(10): 1597-1606, 2022 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-35100429

RESUMO

INTRODUCTION: Tobacco smoking is a major public health burden. The first-line pharmacological treatment for tobacco smoking is nicotine replacement therapy (eg, the nicotine patch (NIC)). Nicotine acts on nicotinic-acetylcholine receptors on dopamine terminals to release dopamine in the ventral and dorsal striatum encoding reward and habit formation, respectively. AIMS AND METHODS: To better understand treatment efficacy, a naturalistic experimental design combined with a kinetic model designed to characterize smoking-induced dopamine release in vivo was used. Thirty-five tobacco smokers (16 female) wore a NIC (21 mg, daily) for 1-week and a placebo patch (PBO) for 1-week in a randomized, counter-balanced order. Following 1-week under NIC and then overnight abstinence, smokers participated in a 90-minute [11C]raclopride positron emission tomography scan and smoked a cigarette while in the scanner. Identical procedures were followed for the PBO scan. A time-varying kinetic model was used at the voxel level to model transient dopamine release peaking instantaneously at the start of the stimulus and decaying exponentially. Magnitude and spatial extent of dopamine release were estimated. Smokers were subcategorized by nicotine dependence level and nicotine metabolism rate. RESULTS: Dopamine release magnitude was enhanced by NIC in ventral striatum and diminished by NIC in dorsal striatum. More-dependent smokers activated more voxels than the less-dependent smokers under both conditions. Under PBO, fast metabolizers activated more voxels in ventral striatum and fewer voxels in dorsal striatum compared to slow metabolizers. CONCLUSIONS: These findings demonstrate that the model captured a pattern of transient dopamine responses to cigarette smoking which may be different across smoker subgroup categorizations. IMPLICATIONS: This is the first study to show that NIC alters highly localized patterns of cigarette smoking-induced dopamine release and that levels of nicotine dependence and nicotine clearance rate contribute to these alterations. This current work included a homogeneous subject sample with regards to demographic and smoking variables, as well as a highly sensitive model capable of detecting significant acute dopamine transients. The findings of this study add support to the recent identification of biomarkers for predicting the effect of nicotine replacement therapies on dopamine function which could help refine clinical practice for smoking cessation.


Assuntos
Fumar Cigarros , Receptores Nicotínicos , Abandono do Hábito de Fumar , Tabagismo , Feminino , Humanos , Biomarcadores , Dopamina/metabolismo , Nicotina , Racloprida , Nicotiana/metabolismo , Dispositivos para o Abandono do Uso de Tabaco
4.
Nicotine Tob Res ; 24(5): 745-752, 2022 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-34628508

RESUMO

INTRODUCTION: Chronic nicotine exposure desensitizes dopamine responses in animals, but it is not known if this occurs in human tobacco smokers. Deficits in dopamine function are likely to make smoking cessation difficult. We used positron emission tomography (PET) brain imaging with the dopamine D2/3 receptor agonist radioligand [11C]-(+)-PHNO to determine if abstinent smokers exhibit less amphetamine-induced dopamine release in the ventral striatum than nonsmokers, and whether this was associated with clinical correlates of smoking cessation. METHODS: Baseline [11C]-(+)-PHNO scans were acquired from smokers (n = 22, 7 female, abstinent 11 ± 9 days) and nonsmokers (n = 20, 7 female). A subset of thirty-seven participants (18 smokers) received oral amphetamine (0.5 mg/kg) three hours before a second [11C]-(+)-PHNO scan. Binding potential (BPND) (i.e., D2/3 receptor availability) was estimated at baseline and postamphetamine in the ventral striatum. Amphetamine-induced percent change in BPND was calculated to reflect dopamine release. Subjects also completed the Center for Epidemiologic Studies Depression Scale (CES-D). RESULTS: There were no group differences in baseline BPND. Amphetamine-induced percent change in BPND in the ventral striatum was significantly lower in abstinent smokers compared to nonsmokers (p=0.019; d=0.82). Higher CES-D scores were significantly associated with lower ventral striatal percent change in BPND for abstinent smokers (rs=-0.627, p=0.025). CONCLUSIONS: In conclusion, abstinent smokers exhibited significantly less amphetamine-induced dopamine release in the ventral striatum than nonsmokers. In abstinent smokers, worse mood was significantly associated with less striatal dopamine release. Our findings highlight a potential neural mechanism that may underlie negative mood symptoms during early abstinence. IMPLICATIONS: This study combined quantitative PET imaging and an amphetamine challenge to examine striatal dopamine function during early smoking cessation attempts. The findings demonstrate that recently abstinent tobacco smokers exhibit significant, mood-associated striatal dopamine dysfunction compared to nonsmokers. This study advances our knowledge of the neurobiology underlying early quit attempts, and bridges novel neural findings with clinically relevant symptoms of smoking cessation. These results may explain the challenge of maintaining long-term abstinence from smoking, and can lend insight into the development of treatment strategies for smoking cessation.


Assuntos
Dopamina , Estriado Ventral , Animais , Radioisótopos de Carbono , Dopamina/metabolismo , Feminino , Humanos , não Fumantes , Tomografia por Emissão de Pósitrons/métodos , Fumantes , Estriado Ventral/diagnóstico por imagem , Estriado Ventral/metabolismo
5.
Drug Alcohol Depend ; 227: 108920, 2021 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-34399137

RESUMO

BACKGROUND: Dopaminergic mechanisms that may underlie cannabis' reinforcing effects are not well elucidated in humans. This positron emission tomography (PET) imaging study used the dopamine D2/3 receptor antagonist [11C]raclopride and kinetic modelling testing for transient changes in radiotracer uptake to assess the striatal dopamine response to smoked cannabis in a preliminary sample. METHODS: PET emission data were acquired from regular cannabis users (n = 14; 7 M/7 F; 19-32 years old) over 90 min immediately after [11C]raclopride administration (584 ± 95 MBq) as bolus followed by constant infusion (Kbol = 105 min). Participants smoked a cannabis cigarette, using a paced puff protocol, 35 min after scan start. Plasma concentrations of Δ9-THC and metabolites and ratings of subjective "high" were collected during imaging. Striatal dopamine responses were assessed voxelwise with a kinetic model testing for transient reductions in [11C]raclopride binding, linear-parametric neurotransmitter PET (lp-ntPET) (cerebellum as a reference region). RESULTS: Cannabis smoking increased plasma Δ9-THC levels (peak: 0-10 min) and subjective high (peak: 0-30 min). Significant clusters (>16 voxels) modeled by transient reductions in [11C]raclopride binding were identified for all 12 analyzed scans. In total, 26 clusters of significant responses to cannabis were detected, of which 16 were located in the ventral striatum, including at least one ventral striatum cluster in 11 of the 12 analyzed scans. CONCLUSIONS: These preliminary data support the sensitivity of [11C]raclopride PET with analysis of transient changes in radiotracer uptake to detect cannabis smoking-induced dopamine responses. This approach shows future promise to further elucidate roles of mesolimbic dopaminergic signaling in chronic cannabis use. ClinicalTrials.gov Identifier: NCT02817698.


Assuntos
Cannabis , Fumar Maconha , Estriado Ventral , Adulto , Corpo Estriado/diagnóstico por imagem , Dopamina , Humanos , Tomografia por Emissão de Pósitrons , Racloprida , Adulto Jovem
6.
Drug Alcohol Depend ; 221: 108614, 2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33621809

RESUMO

BACKGROUND: Preclinical rodent studies have demonstrated reduced cocaine taking after administration of glucagon-like peptide 1 (GLP-1) analogues. We investigated effects of a GLP-1 analogue (exenatide) on behavioral and subjective effects of cocaine in individuals with cocaine use disorder (CUD). METHODS: Non-treatment-seeking CUD subjects underwent two human laboratory cocaine self-administration test sessions following an acute 3 -h pre-treatment with exenatide (5 mcg; subcutaneously) or placebo. Primary outcomes consisted of infusions of cocaine and visual analog scale self-ratings of euphoria and wanting cocaine. Secondary outcomes consisted of pertinent hormone levels (GLP-1, insulin, and amylin). RESULTS: Thirteen individuals completed the study. Acute pretreatment with exenatide versus placebo did not change cocaine infusions (8.5 ± 1.2 vs. 9.1 ± 1.2; p = 0.39), self-reported euphoria (4.4 ± 0.8 vs. 4.1 ± 0.8; p = 0.21), or wanting of cocaine (5.6 ± 0.9 vs. 5.4 ± 0.9; p = 0.46). Exenatide vs. placebo reduced levels of GLP-1 (p = 0.03) and insulin (p = 0.02). Self-administered cocaine also reduced levels of GLP-1 (p < 0.0001), insulin (p < 0.0001), and amylin (p < 0.0001). CONCLUSIONS: We did not find evidence that low dose exenatide alters cocaine self-administration or the subjective effects of cocaine in people with CUD. Limitations such as single acute rather than chronic pre-treatment, as well as evaluation of only one dose, preclude drawing firm conclusions about the efficacy of exenatide. Exenatide and cocaine independently reduced levels of GLP-1 and insulin, while cocaine also reduced levels of amylin.


Assuntos
Transtornos Relacionados ao Uso de Cocaína/tratamento farmacológico , Cocaína/administração & dosagem , Exenatida/farmacologia , Receptor do Peptídeo Semelhante ao Glucagon 1/agonistas , Incretinas/farmacologia , Adulto , Transtornos Relacionados ao Uso de Cocaína/sangue , Estudos Cross-Over , Método Duplo-Cego , Feminino , Peptídeo 1 Semelhante ao Glucagon/sangue , Peptídeo 1 Semelhante ao Glucagon/efeitos dos fármacos , Humanos , Insulina/sangue , Polipeptídeo Amiloide das Ilhotas Pancreáticas/sangue , Polipeptídeo Amiloide das Ilhotas Pancreáticas/efeitos dos fármacos , Masculino , Pessoa de Meia-Idade , Autoadministração , Resultado do Tratamento
7.
Nat Commun ; 11(1): 2360, 2020 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-32398677

RESUMO

Despite well-known peripheral immune activation in posttraumatic stress disorder (PTSD), there are no studies of brain immunologic regulation in individuals with PTSD. [11C]PBR28 Positron Emission Tomography brain imaging of the 18-kDa translocator protein (TSPO), a microglial biomarker, was conducted in 23 individuals with PTSD and 26 healthy individuals-with or without trauma exposure. Prefrontal-limbic TSPO availability in the PTSD group was negatively associated with PTSD symptom severity and was significantly lower than in controls. Higher C-reactive protein levels were also associated with lower prefrontal-limbic TSPO availability and PTSD severity. An independent postmortem study found no differential gene expression in 22 PTSD vs. 22 controls, but showed lower relative expression of TSPO and microglia-associated genes TNFRSF14 and TSPOAP1 in a female PTSD subgroup. These findings suggest that peripheral immune activation in PTSD is associated with deficient brain microglial activation, challenging prevailing hypotheses positing neuroimmune activation as central to stress-related pathophysiology.


Assuntos
Encéfalo/imunologia , Microglia/imunologia , Transtornos de Estresse Pós-Traumáticos/imunologia , Acetamidas/administração & dosagem , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Adulto , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Estudos de Casos e Controles , Feminino , Perfilação da Expressão Gênica , Voluntários Saudáveis , Humanos , Masculino , Microglia/patologia , Pessoa de Meia-Idade , Tomografia por Emissão de Pósitrons/métodos , Piridinas/administração & dosagem , Compostos Radiofarmacêuticos/administração & dosagem , Receptores de GABA/imunologia , Receptores de GABA/metabolismo , Membro 14 de Receptores do Fator de Necrose Tumoral/metabolismo , Fatores Sexuais , Transtornos de Estresse Pós-Traumáticos/diagnóstico por imagem , Transtornos de Estresse Pós-Traumáticos/patologia , Adulto Jovem
8.
Mol Imaging Biol ; 22(4): 1124-1131, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32133575

RESUMO

CONTEXT: Cortisol, a glucocorticoid steroid stress hormone, is primarily responsible for stimulating gluconeogenesis in the liver and promoting adipocyte differentiation and maturation. Prolonged excess cortisol leads to visceral adiposity, insulin resistance, hyperglycemia, memory dysfunction, cognitive impairment, and more severe Alzheimer's disease phenotypes. The intracellular enzyme 11ß-hydroxysteroid dehydrogenase type 1 (11ß-HSD1) catalyzes the conversion of inactive cortisone to active cortisol; yet the amount of 11ß-HSD1 in the brain has not been quantified directly in vivo. OBJECTIVE: We analyzed positron emission tomography (PET) scans with an 11ß-HSD1 inhibitor radioligand in twenty-eight individuals (23 M/5F): 10 lean, 13 overweight, and 5 obese individuals. Each individual underwent PET imaging on the high-resolution research tomograph PET scanner after injection of 11C-AS2471907 (n = 17) or 18F-AS2471907 (n = 11). Injected activity and mass doses were 246 ± 130 MBq and 0.036 ± 0.039 µg, respectively, for 11C-AS2471907, and 92 ± 15 MBq and 0.001 ± 0.001 µg for 18F-AS2471907. Correlations of mean whole brain and regional distribution volume (VT) with body mass index (BMI) and age were performed with a linear regression model. RESULTS: Significant correlations of whole brain mean VT with BMI and age (VT = 15.23-0.63 × BMI + 0.27 × Age, p = 0.001) were revealed. Age-adjusted mean whole brain VT values were significantly lower in obese individuals. Post hoc region specific analyses revealed significantly reduced mean VT values in the thalamus (lean vs. overweight and lean vs. obese individuals). Caudate, hypothalamus, parietal lobe, and putamen also showed lower VT value in obese vs. lean individuals. A significant age-associated increase of 2.7 mL/cm3 per decade was seen in BMI-corrected mean whole brain VT values. CONCLUSIONS: In vivo PET imaging demonstrated, for the first time, correlation of higher BMI (obesity) with lower levels of the enzyme 11ß-HSD1 in the brain and correlation of increased 11ß-HSD1 levels in the brain with advancing age.


Assuntos
11-beta-Hidroxiesteroide Desidrogenase Tipo 1/metabolismo , Envelhecimento/metabolismo , Índice de Massa Corporal , Encéfalo/diagnóstico por imagem , Encéfalo/enzimologia , Tomografia por Emissão de Pósitrons , Adulto , Fatores Etários , Feminino , Humanos , Masculino , Especificidade de Órgãos
9.
J Nucl Med ; 61(8): 1200-1204, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32005773

RESUMO

The effects of tobacco smoking on the immune system of the brain are not well elucidated. Although nicotine is immunosuppressive, other constituents in tobacco smoke have inflammatory effects. PET imaging of the 18-kDa translocator protein (TSPO) provides a biomarker for microglia, the primary immunocompetent cells of the brain. This work compared brain TSPO levels in 20 tobacco smokers (abstinent for at least 2 h) and 20 nonsmokers using a fully quantitative modeling approach for the first time, to our knowledge. Methods:11C-PBR28 (N-((2-(methoxy-11C)-phenyl)methyl)-N-(6-phenoxy-3-pyridinyl)acetamide) PET scans were acquired with arterial blood sampling to estimate the metabolite-corrected input function. 11C-PBR28 volumes of distribution were estimated throughout the brain with multilinear analysis. Results: Statistical analyses revealed no evidence of significant differences in regional 11C-PBR28 volumes of distribution between smokers and nonsmokers (whole-brain Cohen d = 0.09) despite adequate power to detect medium effect sizes. Conclusion: These findings inform previous PET studies reporting lower TSPO radiotracer concentrations in the brain (measured as SUV) for tobacco smokers than for nonsmokers by demonstrating the importance of accounting for radiotracer concentrations in plasma. These findings suggest that nonsmokers and smokers have comparable TSPO levels in the brain. Additional work with other biomarkers is needed to fully characterize the effects of tobacco smoking on the brain immune system.


Assuntos
Tomografia por Emissão de Pósitrons , Receptores de GABA/metabolismo , Fumar Tabaco/efeitos adversos , Fumar Tabaco/metabolismo , Adulto , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Adulto Jovem
10.
J Nucl Med ; 61(4): 570-576, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31601695

RESUMO

Type 1 diabetes mellitus (T1DM) has traditionally been characterized by a complete destruction of ß-cell mass (BCM); however, there is growing evidence of possible residual BCM present in T1DM. Given the absence of in vivo tools to measure BCM, routine clinical measures of ß-cell function (e.g., C-peptide release) may not reflect BCM. We previously demonstrated the potential utility of PET imaging with the dopamine D2 and D3 receptor agonist 3,4,4a,5,6,10b-hexahydro-2H-naphtho[1,2-b][1,4]oxazin-9-ol (11C-(+)-PHNO) to differentiate between healthy control (HC) and T1DM individuals. Methods: Sixteen individuals participated (10 men, 6 women; 9 HCs, 7 T1DMs). The average duration of diabetes was 18 ± 6 y (range, 14-30 y). Individuals underwent PET/CT scanning with a 120-min dynamic PET scan centered on the pancreas. One- and 2-tissue-compartment models were used to estimate pancreas and spleen distribution volume. Reference region approaches (spleen as reference) were also investigated. Quantitative PET measures were correlated with clinical outcome measures. Immunohistochemistry was performed to examine colocalization of dopamine receptors with endocrine hormones in HC and T1DM pancreatic tissue. Results: C-peptide release was not detectable in any T1DM individuals, whereas proinsulin was detectable in 3 of 5 T1DM individuals. Pancreas SUV ratio minus 1 (SUVR-1) (20-30 min; spleen as reference region) demonstrated a statistically significant reduction (-36.2%) in radioligand binding (HCs, 5.6; T1DMs, 3.6; P = 0.03). Age at diagnosis correlated significantly with pancreas SUVR-1 (20-30 min) (R2 = 0.67, P = 0.025). Duration of diabetes did not significantly correlate with pancreas SUVR-1 (20-30 min) (R2 = 0.36, P = 0.16). Mean acute C-peptide response to arginine at maximal glycemic potentiation did not significantly correlate with SUVR-1 (20-30 min) (R2 = 0.57, P = 0.05), nor did mean baseline proinsulin (R2 = 0.45, P = 0.10). Immunohistochemistry demonstrated colocalization of dopamine D3 receptor and dopamine D2 receptor in HCs. No colocalization of the dopamine D3 receptor or dopamine D2 receptor was seen with somatostatin, glucagon, or polypeptide Y. In a separate T1DM individual, no immunostaining was seen with dopamine D3 receptor, dopamine D2 receptor, or insulin antibodies, suggesting that loss of endocrine dopamine D3 receptor and dopamine D2 receptor expression accompanies loss of ß-cell functional insulin secretory capacity. Conclusion: Thirty-minute scan durations and SUVR-1 provide quantitative outcome measures for 11C-(+)-PHNO, a dopamine D3 receptor-preferring agonist PET radioligand, to differentiate BCM in T1DM and HCs.


Assuntos
Diabetes Mellitus Tipo 1/diagnóstico por imagem , Oxazinas , Pâncreas/diagnóstico por imagem , Pâncreas/metabolismo , Tomografia por Emissão de Pósitrons , Receptores de Dopamina D2/metabolismo , Receptores de Dopamina D3/metabolismo , Adulto , Diabetes Mellitus Tipo 1/metabolismo , Feminino , Humanos , Ligantes , Masculino , Pessoa de Meia-Idade , Adulto Jovem
11.
Neuropsychopharmacology ; 44(13): 2205-2211, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31269510

RESUMO

Sex differences exist in the neurochemical mechanisms underlying tobacco smoking and smoking-related behaviors. Men tend to smoke for the reinforcing effects of nicotine, whereas women tend to smoke for stress and mood regulation, and have a harder time maintaining long-term abstinence. The mesolimbic dopamine (DA) system drives the reinforcing effects of tobacco smoking, whereas the mesocortical DA system-including the dorsolateral prefrontal cortex (dlPFC)-is critical for stress-related cognitive functioning and inhibitory control. This study is the first to investigate dlPFC D2/3-type receptor (D2R) availability and amphetamine-induced cortical DA release in smokers and nonsmokers. Forty-nine subjects (24 tobacco smokers (12 females) and 25 sex- and age-matched nonsmokers) participated in two same-day [11C]FLB457 positron emission tomography (PET) scans before and 3-hours after amphetamine administration (0.4-0.5 mg/kg, PO). D2R availability (non-displaceable binding potential; BPND) was measured pre- and post-amphetamine. The percent fractional change in BPND (%ΔBPND) between pre- and post-amphetamine, an index of DA release, was compared between male and female smokers and nonsmokers. Smokers showed significantly lower dlPFC D2R availability (BPND = 0.77 ± 0.05) than nonsmokers (BPND = 0.92 ± 0.04), p = 0.016, driven by males. Female smokers showed significantly less amphetamine-induced DA release in dlPFC (%ΔBPND = 1.9 ± 3.0%) than male smokers (%ΔBPND = 14.0 ± 4.3%), p < 0.005, and female nonsmokers (%ΔBPND = 9.3 ± 3.3%), p < 0.005. This study shows that in the prefrontal cortex, smokers have lower D2R availability than nonsmokers and that female vs. male smokers have a blunted amphetamine-induced DA release. These findings demonstrate that tobacco smoking differentially affects the mesocortical DA system in men vs. women, suggesting a potential target for gender-specific treatments.


Assuntos
Anfetamina/administração & dosagem , Dopamina/metabolismo , Córtex Pré-Frontal/efeitos dos fármacos , Córtex Pré-Frontal/metabolismo , Receptores de Dopamina D2/metabolismo , Caracteres Sexuais , Fumantes , Adulto , Feminino , Humanos , Masculino , Tomografia por Emissão de Pósitrons
12.
Neuropsychopharmacology ; 44(10): 1720-1727, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31026862

RESUMO

Animal studies indicate that the kappa-opioid receptor/dynorphin system plays an important role in cocaine binges and stress-induced relapse. Our goal was to investigate changes in kappa-opioid receptor (KOR) availability in the human brain using positron emission tomography (PET), before and after a cocaine binge. We also investigated the correlation between KOR and stress-induced cocaine self-administration. PET imaging was performed with the KOR selective agonist [11C]GR103545. Subjects with cocaine-use disorder (CUD) underwent PET scans and performed two types of cocaine self-administration sessions in the laboratory as follows: (1) choice sessions following a cold pressor test, to induce stress, and (2) binge dosing of cocaine. This allowed us investigate the following: (1) the association between KOR binding and a laboratory model of stress-induced relapse and (2) the change in KOR binding following a 3-day cocaine binge, which is thought to represent a change in endogenous dynorphin. A group of matched healthy controls was included to investigate between group differences in KOR availability. A significant association between [11C]GR103545 binding and cocaine self-administration was seen: greater KOR availability was associated with more choices for cocaine. In addition, the 3-day cocaine binge significantly reduced [11C]GR103545 binding by 18% in the striatum and 14% across brain regions. No difference in [11C]GR103545 binding was found between the CUD subjects and matched controls. In the context of previous studies, these findings add to the growing evidence that pharmacotherapies targeting the KOR have the potential to significantly impact treatment development for cocaine-use disorder.


Assuntos
Encéfalo/metabolismo , Transtornos Relacionados ao Uso de Cocaína/metabolismo , Cocaína/administração & dosagem , Receptores Opioides kappa/metabolismo , Adulto , Encéfalo/diagnóstico por imagem , Radioisótopos de Carbono , Estudos de Casos e Controles , Comportamento de Escolha , Fumar Cocaína , Transtornos Relacionados ao Uso de Cocaína/diagnóstico por imagem , Transtornos Relacionados ao Uso de Cocaína/psicologia , Dinorfinas/metabolismo , Humanos , Masculino , Pessoa de Meia-Idade , Naltrexona/farmacologia , Antagonistas de Entorpecentes/farmacologia , Neostriado/diagnóstico por imagem , Neostriado/metabolismo , Piperazinas , Tomografia por Emissão de Pósitrons , Pirrolidinas , Estresse Psicológico/psicologia
13.
Neuropsychopharmacology ; 43(5): 1052-1058, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-28944773

RESUMO

Guanfacine, a noradrenergic alpha2a agonist, reduced tobacco smoking in a 4-week trial and in animal models has been shown to reduce cortical dopamine release, which is critically involved in the reinforcing effect of tobacco smoking. We measured amphetamine-induced extrastriatal dopamine release before and after treatment with guanfacine with [11C]FLB457, a dopamine D2/D3 receptor radiotracer, and positron emission tomography (PET). Sixteen tobacco smokers had one set of [11C]FLB457 PET scans on the same day, one before and one at 2.5-3 h after amphetamine (0.4-0.5 mg/kg, PO). A subset (n=12) then underwent guanfacine treatment (3 mg/day for 3 weeks) and the set of scans were repeated. [11C]FLB457-binding potential (BPND) was measured pre- and post amphetamine in extrastriatal brain regions. The fractional change in BPND after vs before amphetamine (Δ BPND) is an indirect measure of DA release and was compared between the untreated and guanfacine-treated conditions. Guanfacine treatment attenuated amphetamine-induced DA release; however, the change was due to a global 8% decrease in baseline BPND from the untreated to the guanfacine-treated condition. Chronic guanfacine treatment reduced [11C]FLB457 BPND in tobacco smokers, suggesting an increase in dopaminergic tone. Guanfacine-induced normalization of dopamine signaling may be an important mesocortical mechanism contributing to its ability to aid in tobacco smoking cessation.


Assuntos
Agonistas de Receptores Adrenérgicos alfa 2/farmacologia , Dopamina/metabolismo , Guanfacina/farmacologia , Tomografia por Emissão de Pósitrons , Pirrolidinas/metabolismo , Salicilamidas/metabolismo , Fumantes , Adulto , Anfetamina/farmacologia , Radioisótopos de Carbono , Feminino , Humanos , Masculino , Neuroimagem , Ensaio Radioligante , Fatores de Tempo , Adulto Jovem
14.
Synapse ; 72(3)2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29105121

RESUMO

We aimed to characterize changes in binding of (-)-[18 F]Flubatine to α4 ß2 *-nicotinic acetylcholine receptors (α4 ß2 *-nAChRs) during a tobacco cigarette smoking challenge. Displacement of (-)-[18 F]Flubatine throughout the brain was quantified as change in (-)-[18 F]Flubatine distribution volume (VT ), with particular emphasis on regions with low VT . Three tobacco smokers were imaged with positron emission tomography (PET) during a 210 min bolus-plus-constant infusion of (-)-[18 F]Flubatine. A tobacco cigarette was smoked in the PET scanner ∼125 min after the start of (-)-[18 F]Flubatine injection. Equilibrium analysis was used to estimate VT at baseline (90-120 min) and after cigarette challenge (180-210 min), at the time of greatest receptor occupancy by nicotine. Smoking reduced VT by 21 ± 9% (average ±SD) in corpus callosum, 17 ± 9% in frontal cortex, 36 ± 11% in cerebellum, and 22 ± 10% in putamen. The finding of displaceable (-)-[18 F]Flubatine binding throughout the brain is an important consideration for reference region-based quantification approaches with this tracer. We observed displacement of (-)-[18 F]Flubatine binding to α4 ß2 *-nicotinic acetylcholine receptors in corpus callosum by a tobacco cigarette challenge. We conclude that reference region approaches utilizing corpus callosum should first perform careful characterization of displaceable (-)-[18 F]Flubatine binding and nondisplaceable kinetics in this putative reference region.


Assuntos
Benzamidas , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Compostos Bicíclicos Heterocíclicos com Pontes , Tomografia por Emissão de Pósitrons , Compostos Radiofarmacêuticos , Receptores Nicotínicos/metabolismo , Adulto , Benzamidas/farmacocinética , Encéfalo/efeitos dos fármacos , Mapeamento Encefálico , Compostos Bicíclicos Heterocíclicos com Pontes/farmacocinética , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Nicotina/administração & dosagem , Nicotina/farmacocinética , Agonistas Nicotínicos/administração & dosagem , Agonistas Nicotínicos/farmacocinética , Ligação Proteica , Compostos Radiofarmacêuticos/farmacocinética , Fumar/metabolismo
15.
Biol Psychiatry ; 76(10): 816-22, 2014 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-24433854

RESUMO

BACKGROUND: Preclinical evidence implicates the serotonin receptor 5-hydroxytryptamine 1B (5-HT1B) in the effects of cocaine. This study explores 5-HT1B in humans by examining receptor availability in vivo in subjects whose primary addiction is cocaine dependence (CD) using positron emission tomography. METHODS: Study participants included 14 medically healthy subjects with CD (mean age = 41 ± 6 years) who were compared with 14 age-matched healthy control subjects (mean age = 41 ± 8 years) with no past or current history of cocaine or other illicit substance abuse. Participants underwent magnetic resonance imaging followed by positron emission tomography with the highly selective 5-HT1B tracer, [(11)C]P943, for purposes of quantifying regional binding potential. Voxel-based morphometry and gray matter masking also were employed to control for potential partial volume effects. RESULTS: The [(11)C]P943 positron emission tomography imaging data in nine candidate regions (amygdala, anterior cingulate cortex, caudate, frontal cortex, hypothalamus, pallidum, putamen, thalamus, and ventral striatum) showed significant or nearly significant reductions of regional binding potential in subjects with CD in three regions: anterior cingulate (-16%, p < .01), hypothalamus (-16%, p = .03), and frontal cortex (-7%, p = .08). Voxel-based morphometry showed significant gray matter reductions in the frontal cortex of subjects with CD. After gray matter masking, statistically significant reductions in the [(11)C]P943 regional binding potential were either retained (anterior cingulate, -14%, p = .01; hypothalamus, -20%, p < .01) or achieved (frontal cortex, -14%, p < .01). Whole-brain voxel-wise parameter estimation confirmed these results. Secondary analyses were also significant in some regions for years of cocaine and daily tobacco use. CONCLUSIONS: The reductions found in this study suggest that 5-HT1B receptors may contribute to the etiology or expression of CD and potentially represent a target for medication development.


Assuntos
Encéfalo/metabolismo , Transtornos Relacionados ao Uso de Cocaína/metabolismo , Receptor 5-HT1B de Serotonina/metabolismo , Adulto , Encéfalo/diagnóstico por imagem , Radioisótopos de Carbono , Transtornos Relacionados ao Uso de Cocaína/diagnóstico por imagem , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Tomografia por Emissão de Pósitrons
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA