Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
2.
Cell Death Dis ; 13(4): 353, 2022 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-35428762

RESUMO

Pancreatic ß-cell failure in type 2 diabetes mellitus (T2DM) is associated with impaired regulation of autophagy which controls ß-cell development, function, and survival through clearance of misfolded proteins and damaged organelles. However, the mechanisms responsible for defective autophagy in T2DM ß-cells remain unknown. Since recent studies identified circadian clock transcriptional repressor REV-ERBα as a novel regulator of autophagy in cancer, in this study we set out to test whether REV-ERBα-mediated inhibition of autophagy contributes to the ß-cell failure in T2DM. Our study provides evidence that common diabetogenic stressors (e.g., glucotoxicity and cytokine-mediated inflammation) augment ß-cell REV-ERBα expression and impair ß-cell autophagy and survival. Notably, pharmacological activation of REV-ERBα was shown to phenocopy effects of diabetogenic stressors on the ß-cell through inhibition of autophagic flux, survival, and insulin secretion. In contrast, negative modulation of REV-ERBα was shown to provide partial protection from inflammation and glucotoxicity-induced ß-cell failure. Finally, using bioinformatic approaches, we provide further supporting evidence for augmented REV-ERBα activity in T2DM human islets associated with impaired transcriptional regulation of autophagy and protein degradation pathways. In conclusion, our study reveals a previously unexplored causative relationship between REV-ERBα expression, inhibition of autophagy, and ß-cell failure in T2DM.


Assuntos
Relógios Circadianos , Diabetes Mellitus Tipo 2 , Autofagia/genética , Ritmo Circadiano/fisiologia , Diabetes Mellitus Tipo 2/genética , Humanos , Inflamação , Membro 1 do Grupo D da Subfamília 1 de Receptores Nucleares/genética , Membro 1 do Grupo D da Subfamília 1 de Receptores Nucleares/metabolismo
3.
Sci Adv ; 8(12): eabj9949, 2022 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-35319981

RESUMO

Currently, there is no pharmacological treatment targeting defective tissue repair in chronic disease. Here, we used a transcriptomics-guided drug target discovery strategy using gene signatures of smoking-associated chronic obstructive pulmonary disease (COPD) and from mice chronically exposed to cigarette smoke, identifying druggable targets expressed in alveolar epithelial progenitors, of which we screened the function in lung organoids. We found several drug targets with regenerative potential, of which EP and IP prostanoid receptor ligands had the most profound therapeutic potential in restoring cigarette smoke-induced defects in alveolar epithelial progenitors in vitro and in vivo. Mechanistically, we found, using single-cell RNA sequencing analysis, that circadian clock and cell cycle/apoptosis signaling pathways were differentially expressed in alveolar epithelial progenitor cells in patients with COPD and in a relevant model of COPD, which was prevented by prostaglandin E2 or prostacyclin mimetics. We conclude that specific targeting of EP and IP receptors offers therapeutic potential for injury to repair in COPD.


Assuntos
Doença Pulmonar Obstrutiva Crônica , Transcriptoma , Animais , Humanos , Ligantes , Pulmão/metabolismo , Camundongos , Doença Pulmonar Obstrutiva Crônica/etiologia , Doença Pulmonar Obstrutiva Crônica/genética , Regeneração
4.
Gastroenterology ; 162(2): 535-547.e13, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34688712

RESUMO

BACKGROUND AND AIMS: The gastrointestinal (GI) tract extracts nutrients from ingested meals while protecting the organism from infectious agents frequently present in meals. Consequently, most animals conduct the entire digestive process within the GI tract while keeping the luminal contents entirely outside the body, separated by the tightly sealed GI epithelium. Therefore, like the skin and oral cavity, the GI tract must sense the chemical and physical properties of the its external interface to optimize its function. Specialized sensory enteroendocrine cells (EECs) in GI epithelium interact intimately with luminal contents. A subpopulation of EECs express the mechanically gated ion channel Piezo2 and are developmentally and functionally like the skin's touch sensor- the Merkel cell. We hypothesized that Piezo2+ EECs endow the gut with intrinsic tactile sensitivity. METHODS: We generated transgenic mouse models with optogenetic activators in EECs and Piezo2 conditional knockouts. We used a range of reference standard and novel techniques from single cells to living animals, including single-cell RNA sequencing and opto-electrophysiology, opto-organ baths with luminal shear forces, and in vivo studies that assayed GI transit while manipulating the physical properties of luminal contents. RESULTS: Piezo2+ EECs have transcriptomic features of synaptically connected, mechanosensory epithelial cells. EEC activation by optogenetics and forces led to Piezo2-dependent alterations in colonic propagating contractions driven by intrinsic circuitry, with Piezo2+ EECs detecting the small luminal forces and physical properties of the luminal contents to regulate transit times in the small and large bowel. CONCLUSIONS: The GI tract has intrinsic tactile sensitivity that depends on Piezo2+ EECs and allows it to detect luminal forces and physical properties of luminal contents to modulate physiology.


Assuntos
Células Enteroendócrinas/metabolismo , Mucosa Intestinal/metabolismo , Canais Iônicos/genética , Tato/fisiologia , Animais , Células Enteroendócrinas/fisiologia , Células Epiteliais/metabolismo , Células Epiteliais/fisiologia , Técnicas de Inativação de Genes , Mucosa Intestinal/citologia , Mucosa Intestinal/fisiologia , Canais Iônicos/metabolismo , Mecanorreceptores , Camundongos , Camundongos Transgênicos , Optogenética , Peristaltismo/fisiologia
5.
Cell Rep ; 36(8): 109613, 2021 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-34433033

RESUMO

Coordinated communication among pancreatic islet cells is necessary for maintenance of glucose homeostasis. In diabetes, chronic exposure to pro-inflammatory cytokines has been shown to perturb ß cell communication and function. Compelling evidence has implicated extracellular vesicles (EVs) in modulating physiological and pathological responses to ß cell stress. We report that pro-inflammatory ß cell small EVs (cytokine-exposed EVs [cytoEVs]) induce ß cell dysfunction, promote a pro-inflammatory islet transcriptome, and enhance recruitment of CD8+ T cells and macrophages. Proteomic analysis of cytoEVs shows enrichment of the chemokine CXCL10, with surface topological analysis depicting CXCL10 as membrane bound on cytoEVs to facilitate direct binding to CXCR3 receptors on the surface of ß cells. CXCR3 receptor inhibition reduced CXCL10-cytoEV binding and attenuated ß cell dysfunction, inflammatory gene expression, and leukocyte recruitment to islets. This work implies a significant role of pro-inflammatory ß cell-derived small EVs in modulating ß cell function, global gene expression, and antigen presentation through activation of the CXCL10/CXCR3 axis.


Assuntos
Linfócitos T CD8-Positivos/metabolismo , Quimiocina CXCL10/metabolismo , Vesículas Extracelulares/metabolismo , Receptores CXCR3/metabolismo , Animais , Linfócitos T CD8-Positivos/imunologia , Diabetes Mellitus/patologia , Células Secretoras de Insulina/metabolismo , Macrófagos/metabolismo , Masculino , Camundongos Endogâmicos C57BL
6.
Commun Biol ; 4(1): 594, 2021 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-34012065

RESUMO

Type 2 diabetes is characterized by ß and α cell dysfunction. We used phasor-FLIM (Fluorescence Lifetime Imaging Microscopy) to monitor oxidative phosphorylation and glycolysis in living islet cells before and after glucose stimulation. In healthy cells, glucose enhanced oxidative phosphorylation in ß cells and suppressed oxidative phosphorylation in α cells. In Type 2 diabetes, glucose increased glycolysis in ß cells, and only partially suppressed oxidative phosphorylation in α cells. FLIM uncovers key perturbations in glucose induced metabolism in living islet cells and provides a sensitive tool for drug discovery in diabetes.


Assuntos
Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Células Secretoras de Glucagon/metabolismo , Glucose/farmacologia , Células Secretoras de Insulina/metabolismo , Imagem Molecular/métodos , Animais , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/patologia , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/patologia , Células Secretoras de Glucagon/efeitos dos fármacos , Glicólise , Humanos , Células Secretoras de Insulina/efeitos dos fármacos , Polipeptídeo Amiloide das Ilhotas Pancreáticas/metabolismo , Masculino , Camundongos , Microscopia de Fluorescência , Fosforilação Oxidativa , Ratos , Ratos Sprague-Dawley , Ratos Transgênicos
7.
Endocrinology ; 162(1)2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-32455427

RESUMO

Intrinsic ß-cell circadian clocks are important regulators of insulin secretion and overall glucose homeostasis. Whether the circadian clock in ß-cells is perturbed following exposure to prodiabetogenic stressors such as proinflammatory cytokines, and whether these perturbations are featured during the development of diabetes, remains unknown. To address this, we examined the effects of cytokine-mediated inflammation common to the pathophysiology of diabetes, on the physiological and molecular regulation of the ß-cell circadian clock. Specifically, we provide evidence that the key diabetogenic cytokine IL-1ß disrupts functionality of the ß-cell circadian clock and impairs circadian regulation of glucose-stimulated insulin secretion. The deleterious effects of IL-1ß on the circadian clock were attributed to impaired expression of key circadian transcription factor Bmal1, and its regulator, the NAD-dependent deacetylase, Sirtuin 1 (SIRT1). Moreover, we also identified that Type 2 diabetes in humans is associated with reduced immunoreactivity of ß-cell BMAL1 and SIRT1, suggestive of a potential causative link between islet inflammation, circadian clock disruption, and ß-cell failure. These data suggest that the circadian clock in ß-cells is perturbed following exposure to proinflammatory stressors and highlights the potential for therapeutic targeting of the circadian system for treatment for ß-cell failure in diabetes.


Assuntos
Relógios Circadianos/efeitos dos fármacos , Células Secretoras de Insulina/efeitos dos fármacos , Insulina/metabolismo , Interleucina-1beta/metabolismo , Fatores de Transcrição ARNTL/genética , Fatores de Transcrição ARNTL/metabolismo , Idoso , Animais , Relógios Circadianos/fisiologia , Diabetes Mellitus Tipo 2/metabolismo , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/fisiologia , Humanos , Células Secretoras de Insulina/metabolismo , Insulinoma , Interleucina-1beta/efeitos adversos , Interleucina-1beta/genética , Masculino , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Pessoa de Meia-Idade , Membro 1 do Grupo F da Subfamília 1 de Receptores Nucleares/genética , Membro 1 do Grupo F da Subfamília 1 de Receptores Nucleares/metabolismo , Ratos , Sirtuínas/genética , Sirtuínas/metabolismo
8.
Sci Rep ; 10(1): 19374, 2020 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-33168920

RESUMO

Small-molecule inhibitors of non-canonical IκB kinases TANK-binding kinase 1 (TBK1) and IκB kinase ε (IKKε) have shown to stimulate ß-cell regeneration in multiple species. Here we demonstrate that TBK1 is predominantly expressed in ß-cells in mammalian islets. Proteomic and transcriptome analyses revealed that genetic silencing of TBK1 increased expression of proteins and genes essential for cell proliferation in INS-1 832/13 rat ß-cells. Conversely, TBK1 overexpression decreased sensitivity of ß-cells to the elevation of cyclic AMP (cAMP) levels and reduced proliferation of ß-cells in a manner dependent on the activity of cAMP-hydrolyzing phosphodiesterase 3 (PDE3). While the mitogenic effect of (E)3-(3-phenylbenzo[c]isoxazol-5-yl)acrylic acid (PIAA) is derived from inhibition of TBK1, PIAA augmented glucose-stimulated insulin secretion (GSIS) and expression of ß-cell differentiation and proliferation markers in human embryonic stem cell (hESC)-derived ß-cells and human islets. TBK1 expression was increased in ß-cells upon diabetogenic insults, including in human type 2 diabetic islets. PIAA enhanced expression of cell cycle control molecules and ß-cell differentiation markers upon diabetogenic challenges, and accelerated restoration of functional ß-cells in streptozotocin (STZ)-induced diabetic mice. Altogether, these data suggest the critical function of TBK1 as a ß-cell autonomous replication barrier and present PIAA as a valid therapeutic strategy augmenting functional ß-cells.


Assuntos
Proliferação de Células , Regulação Enzimológica da Expressão Gênica , Células Secretoras de Insulina/enzimologia , Proteínas Serina-Treonina Quinases/biossíntese , Regeneração , Animais , Linhagem Celular Tumoral , Inativação Gênica , Células-Tronco Embrionárias Humanas/enzimologia , Humanos , Insulina/genética , Insulina/metabolismo , Secreção de Insulina , Proteínas Serina-Treonina Quinases/genética , Ratos
9.
Pancreatology ; 20(5): 929-935, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32620407

RESUMO

INTRODUCTION: The majority of patients with pancreatic ductal adenocarcinoma (PC) display either impaired fasting glucose/glucose intolerance or overt diabetes. However, the pathophysiologic basis of this association remains largely unexplained. METHODS: In this case-control study we aimed to study the morphological changes in the islets of patients with PC, compared to control patients with and without type 2 diabetes mellitus (T2DM). T2DM controls and PC cases had a lower ß-cell area and average islet size and density compared to non-T2DM controls (p < 0.05). RESULTS: Compared to both T2DM and non-T2DM controls, mean α-cell area was significantly lower and ß/α-ratio was higher in PC cases (p < 0.05). Furthermore, whereas islets in T2DM controls were characterized by disrupted islet architecture and presence of islet amyloid aggregates, islet composition in PC islets was not significantly different compared to non-T2DM controls (p > 0.05 vs. Control). CONCLUSIONS: Our data shows that PC is associated with a unique pattern of islet pathology characterized by preserved architecture, absence of amyloid aggregates, and relative α-cell loss indicating that distinct mechanisms are likely involved in the pathophysiology of islet failure in PC-induced DM. Insights into the mechanisms mediating ß-cell failure in PC can be important for our understanding of pathophysiology of PC.


Assuntos
Carcinoma Ductal Pancreático/complicações , Diabetes Mellitus Tipo 2 , Pancreatopatias/etiologia , Neoplasias Pancreáticas/complicações , Fatores Etários , Idoso , Amiloide/metabolismo , Autopsia , Índice de Massa Corporal , Estudos de Casos e Controles , Bases de Dados Factuais , Feminino , Células Secretoras de Glucagon/patologia , Humanos , Células Secretoras de Insulina/patologia , Ilhotas Pancreáticas/patologia , Masculino , Pessoa de Meia-Idade , Pancreatopatias/patologia , Fatores Sexuais
10.
Nat Commun ; 11(1): 2241, 2020 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-32382023

RESUMO

The generation of pancreatic cell types from renewable cell sources holds promise for cell replacement therapies for diabetes. Although most effort has focused on generating pancreatic beta cells, considerable evidence indicates that glucagon secreting alpha cells are critically involved in disease progression and proper glucose control. Here we report on the generation of stem cell-derived human pancreatic alpha (SC-alpha) cells from pluripotent stem cells via a transient pre-alpha cell intermediate. These pre-alpha cells exhibit a transcriptional profile similar to mature alpha cells and although they produce proinsulin protein, they do not secrete significant amounts of processed insulin. Compound screening identified a protein kinase c activator that promotes maturation of pre-alpha cells into SC-alpha cells. The resulting SC-alpha cells do not express insulin, share an ultrastructure similar to cadaveric alpha cells, express and secrete glucagon in response to glucose and some glucagon secretagogues, and elevate blood glucose upon transplantation in mice.


Assuntos
Técnicas de Cultura de Células/métodos , Células Secretoras de Glucagon/citologia , Células Secretoras de Insulina/efeitos dos fármacos , Células-Tronco Pluripotentes/citologia , Western Blotting , Diferenciação Celular/fisiologia , Linhagem Celular , Eletrofisiologia , Imunofluorescência , Humanos , Pâncreas/citologia
11.
Nat Commun ; 11(1): 87, 2020 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-31911667

RESUMO

Bone remodeling consists of resorption by osteoclasts followed by formation by osteoblasts, and osteoclasts are a source of bone formation-stimulating factors. Here we utilize osteoclast ablation by denosumab (DMAb) and RNA-sequencing of bone biopsies from postmenopausal women to identify osteoclast-secreted factors suppressed by DMAb. Based on these analyses, LIF, CREG2, CST3, CCBE1, and DPP4 are likely osteoclast-derived coupling factors in humans. Given the role of Dipeptidyl Peptidase-4 (DPP4) in glucose homeostasis, we further demonstrate that DMAb-treated participants have a significant reduction in circulating DPP4 and increase in Glucagon-like peptide (GLP)-1 levels as compared to the placebo-treated group, and also that type 2 diabetic patients treated with DMAb show significant reductions in HbA1c as compared to patients treated either with bisphosphonates or calcium and vitamin D. Thus, our results identify several coupling factors in humans and uncover osteoclast-derived DPP4 as a potential link between bone remodeling and energy metabolism.


Assuntos
Osso e Ossos/metabolismo , Metabolismo Energético , Osteoblastos/metabolismo , Osteoclastos/metabolismo , Idoso , Idoso de 80 Anos ou mais , Animais , Remodelação Óssea , Proteínas de Ligação ao Cálcio/genética , Proteínas de Ligação ao Cálcio/metabolismo , Denosumab/administração & dosagem , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/fisiopatologia , Dipeptidil Peptidase 4/genética , Dipeptidil Peptidase 4/metabolismo , Metabolismo Energético/efeitos dos fármacos , Feminino , Humanos , Pessoa de Meia-Idade , Osteoblastos/efeitos dos fármacos , Osteoclastos/efeitos dos fármacos , Estudos Prospectivos , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo
12.
Addict Biol ; 25(5): e12801, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-31267611

RESUMO

Disruptions in circadian rhythms are risk factors for excessive alcohol drinking. The ethanol-sensitive adenosine equilibrative nucleoside transporter type 1 (ENT1, slc29a1) regulates ethanol-related behaviors, sleep, and entrainment of circadian rhythms. However, the mechanism underlying the increased ethanol consumption in ENT1 knockout (KO) mice in constant light (LL) and whether there are sex differences in ethanol consumption in ENT1 mice are less studied. Here, we investigated the effects of loss of ENT1, LL, and sex on ethanol drinking using two-bottle choice. In addition, we monitored the locomotor activity rhythms. We found that LL increased ethanol drinking and reduced accumbal ENT1 expression and adenosine levels in male but not female mice, compared with control mice. Interestingly, only LL-exposed male, not female, ENT1 KO mice exhibited higher ethanol drinking and a longer circadian period with a higher amplitude compared with wild-type (WT) mice. Furthermore, viral-mediated rescue of ENT1 expression in the NAc of ENT1 KO mice reduced ethanol drinking, demonstrating a possible causal link between ENT1 expression and ethanol drinking in males. Together, our findings indicate that deficiency of ENT1 expression contributes to excessive ethanol drinking in a sex-dependent manner.


Assuntos
Transtornos Relacionados ao Uso de Álcool/complicações , Transtornos Relacionados ao Uso de Álcool/genética , Transportador Equilibrativo 1 de Nucleosídeo/genética , Transportador Equilibrativo 1 de Nucleosídeo/fisiologia , Transtornos do Sono do Ritmo Circadiano/complicações , Consumo de Bebidas Alcoólicas , Animais , Ritmo Circadiano , Modelos Animais de Doenças , Etanol , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fatores Sexuais
13.
Stem Cell Reports ; 13(2): 307-321, 2019 08 13.
Artigo em Inglês | MEDLINE | ID: mdl-31378674

RESUMO

Generation of functional ß cells from pluripotent sources would accelerate diagnostic and therapeutic applications for diabetes research and therapy. However, it has been challenging to generate competent ß cells with dynamic insulin-secretory capacity to glucose and incretin stimulations. We introduced transcription factors, critical for ß-cell development and function, in differentiating human induced pluripotent stem cells (PSCs) and assessed the impact on the functionality of derived ß-cell (psBC) progeny. A perifusion system revealed stepwise transduction of the PDX1, NEUROG3, and MAFA triad (PNM) enabled in vitro generation of psBCs with glucose and GLP-1 responsiveness within 3 weeks. PNM transduction upregulated genes associated with glucose sensing, insulin secretion, and ß-cell maturation. In recipient diabetic mice, PNM-transduced psBCs showed glucose-responsive insulin secretion as early as 1 week post transplantation. Thus, enhanced pre-emptive ß-cell specification of PSCs by PNM drives generation of glucose- and incretin-responsive psBCs in vitro, offering a competent tissue-primed biotherapy.


Assuntos
Diabetes Mellitus Experimental/terapia , Peptídeo 1 Semelhante ao Glucagon/farmacologia , Glucose/farmacologia , Células-Tronco Pluripotentes Induzidas/transplante , Secreção de Insulina/efeitos dos fármacos , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Peptídeo C/metabolismo , Diferenciação Celular , Diabetes Mellitus Experimental/induzido quimicamente , Regulação da Expressão Gênica , Teste de Tolerância a Glucose , Proteína Homeobox Nkx-2.2 , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Células Secretoras de Insulina/citologia , Células Secretoras de Insulina/metabolismo , Fatores de Transcrição Maf Maior/genética , Fatores de Transcrição Maf Maior/metabolismo , Camundongos , Camundongos SCID , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Transativadores/genética , Transativadores/metabolismo , Transdução Genética , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
14.
J Clin Invest ; 129(10): 4124-4137, 2019 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-31265435

RESUMO

Pancreatic beta cells (ß-cells) differentiate during fetal life, but only postnatally acquire the capacity for glucose-stimulated insulin secretion (GSIS). How this happens is not clear. In exploring what molecular mechanisms drive the maturation of ß-cell function, we found that the control of cellular signaling in ß-cells fundamentally switched from the nutrient sensor target of rapamycin (mTORC1) to the energy sensor 5'-adenosine monophosphate-activated protein kinase (AMPK), and that this was critical for functional maturation. Moreover, AMPK was activated by the dietary transition taking place during weaning, and this in turn inhibited mTORC1 activity to drive the adult ß-cell phenotype. While forcing constitutive mTORC1 signaling in adult ß-cells relegated them to a functionally immature phenotype with characteristic transcriptional and metabolic profiles, engineering the switch from mTORC1 to AMPK signaling was sufficient to promote ß-cell mitochondrial biogenesis, a shift to oxidative metabolism, and functional maturation. We also found that type 2 diabetes, a condition marked by both mitochondrial degeneration and dysregulated GSIS, was associated with a remarkable reversion of the normal AMPK-dependent adult ß-cell signature to a more neonatal one characterized by mTORC1 activation. Manipulating the way in which cellular nutrient signaling pathways regulate ß-cell metabolism may thus offer new targets to improve ß-cell function in diabetes.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Células Secretoras de Insulina/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Transdução de Sinais , Proteínas Quinases Ativadas por AMP/genética , Animais , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/patologia , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/patologia , Secreção de Insulina/genética , Células Secretoras de Insulina/patologia , Alvo Mecanístico do Complexo 1 de Rapamicina/genética , Camundongos , Camundongos Knockout
15.
Aging Cell ; 18(3): e12950, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30907060

RESUMO

Adipose tissue inflammation and dysfunction are associated with obesity-related insulin resistance and diabetes, but mechanisms underlying this relationship are unclear. Although senescent cells accumulate in adipose tissue of obese humans and rodents, a direct pathogenic role for these cells in the development of diabetes remains to be demonstrated. Here, we show that reducing senescent cell burden in obese mice, either by activating drug-inducible "suicide" genes driven by the p16Ink4a promoter or by treatment with senolytic agents, alleviates metabolic and adipose tissue dysfunction. These senolytic interventions improved glucose tolerance, enhanced insulin sensitivity, lowered circulating inflammatory mediators, and promoted adipogenesis in obese mice. Elimination of senescent cells also prevented the migration of transplanted monocytes into intra-abdominal adipose tissue and reduced the number of macrophages in this tissue. In addition, microalbuminuria, renal podocyte function, and cardiac diastolic function improved with senolytic therapy. Our results implicate cellular senescence as a causal factor in obesity-related inflammation and metabolic derangements and show that emerging senolytic agents hold promise for treating obesity-related metabolic dysfunction and its complications.


Assuntos
Adipócitos/metabolismo , Adipogenia/efeitos dos fármacos , Tecido Adiposo/metabolismo , Senescência Celular/efeitos dos fármacos , Inflamação/metabolismo , Resistência à Insulina/fisiologia , Obesidade/metabolismo , Adipócitos/citologia , Adipócitos/efeitos dos fármacos , Adipogenia/fisiologia , Tecido Adiposo/efeitos dos fármacos , Envelhecimento/metabolismo , Envelhecimento/patologia , Animais , Morte Celular/efeitos dos fármacos , Morte Celular/genética , Morte Celular/fisiologia , Linhagem Celular , Senescência Celular/genética , Senescência Celular/fisiologia , Inibidor p16 de Quinase Dependente de Ciclina/metabolismo , Dasatinibe/farmacologia , Feminino , Ganciclovir/farmacologia , Glucose/metabolismo , Humanos , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Quercetina/farmacologia
16.
Gastroenterology ; 156(6): 1742-1752, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30677401

RESUMO

BACKGROUND & AIMS: Identifying metabolic abnormalities that occur before pancreatic ductal adenocarcinoma (PDAC) diagnosis could increase chances for early detection. We collected data on changes in metabolic parameters (glucose, serum lipids, triglycerides; total, low-density, and high-density cholesterol; and total body weight) and soft tissues (abdominal subcutaneous fat [SAT], adipose tissue, visceral adipose tissue [VAT], and muscle) from patients 5 years before the received a diagnosis of PDAC. METHODS: We collected data from 219 patients with a diagnosis of PDAC (patients) and 657 healthy individuals (controls) from the Rochester Epidemiology Project, from 2000 through 2015. We compared metabolic profiles of patients with those of age- and sex-matched controls, constructing temporal profiles of fasting blood glucose, serum lipids including triglycerides, cholesterol profiles, and body weight and temperature for 60 months before the diagnosis of PDAC (index date). To construct the temporal profile of soft tissue changes, we collected computed tomography scans from 68 patients, comparing baseline (>18 months before diagnosis) areas of SAT, VAT, and muscle at L2/L3 vertebra with those of later scans until time of diagnosis. SAT and VAT, isolated from healthy individuals, were exposed to exosomes isolated from PDAC cell lines and analyzed by RNA sequencing. SAT was collected from KRAS+/LSLG12D P53flox/flox mice with PDACs, C57/BL6 (control) mice, and 5 patients and analyzed by histology and immunohistochemistry. RESULTS: There were no significant differences in metabolic or soft tissue features of patients vs controls until 30 months before PDAC diagnosis. In the 30 to 18 months before PDAC diagnosis (phase 1, hyperglycemia), a significant proportion of patients developed hyperglycemia, compared with controls, without soft tissue changes. In the 18 to 6 months before PDAC diagnosis (phase 2, pre-cachexia), patients had significant increases in hyperglycemia and decreases in serum lipids, body weight, and SAT, with preserved VAT and muscle. In the 6 to 0 months before PDAC diagnosis (phase 3, cachexia), a significant proportion of patients had hyperglycemia compared with controls, and patients had significant reductions in all serum lipids, SAT, VAT, and muscle. We believe the patients had browning of SAT, based on increases in body temperature, starting 18 months before PDAC diagnosis. We observed expression of uncoupling protein 1 (UCP1) in SAT exposed to PDAC exosomes, SAT from mice with PDACs, and SAT from all 5 patients but only 1 of 4 controls. CONCLUSIONS: We identified 3 phases of metabolic and soft tissue changes that precede a diagnosis of PDAC. Loss of SAT starts 18 months before PDAC identification, and is likely due to browning. Overexpression of UCP1 in SAT might be a biomarker of early-stage PDAC, but further studies are needed.


Assuntos
Caquexia/etiologia , Carcinoma Ductal Pancreático/sangue , Carcinoma Ductal Pancreático/diagnóstico , Hiperglicemia/sangue , Neoplasias Pancreáticas/sangue , Neoplasias Pancreáticas/diagnóstico , Adipócitos/metabolismo , Adipócitos/patologia , Animais , Glicemia/metabolismo , Temperatura Corporal , Peso Corporal , Carcinoma Ductal Pancreático/complicações , Carcinoma Ductal Pancreático/genética , Estudos de Casos e Controles , Células Cultivadas , HDL-Colesterol/sangue , LDL-Colesterol/sangue , Exossomos , Humanos , Hiperglicemia/etiologia , Gordura Intra-Abdominal/diagnóstico por imagem , Gordura Intra-Abdominal/patologia , Camundongos , Pessoa de Meia-Idade , Músculo Esquelético/diagnóstico por imagem , Neoplasias Pancreáticas/complicações , Neoplasias Pancreáticas/genética , RNA Mensageiro/metabolismo , Estudos Retrospectivos , Gordura Subcutânea Abdominal/diagnóstico por imagem , Gordura Subcutânea Abdominal/patologia , Fatores de Tempo , Tomografia Computadorizada por Raios X , Triglicerídeos/sangue , Proteína Desacopladora 1/genética , Regulação para Cima
17.
Dis Model Mech ; 11(6)2018 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-29915142

RESUMO

High-fat diet (HFD)-fed mouse models have been widely used to study early type 2 diabetes. Decreased ß-cell glucokinase (GCK) expression has been observed in HFD-induced diabetes. However, owing to its crucial roles in glucose metabolism in the liver and in islet ß-cells, the contribution of decreased GCK expression to the development of HFD-induced diabetes is unclear. Here, we employed a ß-cell-targeted gene transfer vector and determined the impact of ß-cell-specific increase in GCK expression on ß-cell function and glucose handling in vitro and in vivo Overexpression of GCK enhanced glycolytic flux, ATP-sensitive potassium channel activation and membrane depolarization, and increased proliferation in Min6 cells. ß-cell-targeted GCK transduction did not change glucose handling in chow-fed C57BL/6 mice. Although adult mice fed a HFD showed reduced islet GCK expression, impaired glucose tolerance and decreased glucose-stimulated insulin secretion (GSIS), ß-cell-targeted GCK transduction improved glucose tolerance and restored GSIS. Islet perifusion experiments verified restored GSIS in isolated HFD islets by GCK transduction. Thus, our data identify impaired ß-cell GCK expression as an underlying mechanism for dysregulated ß-cell function and glycemic control in HFD-induced diabetes. Our data also imply an etiological role of GCK in diet-induced diabetes.This article has an associated First Person interview with the first author of the paper.


Assuntos
Diabetes Mellitus Experimental/enzimologia , Diabetes Mellitus Experimental/patologia , Glucoquinase/metabolismo , Células Secretoras de Insulina/enzimologia , Células Secretoras de Insulina/patologia , Animais , Cálcio/metabolismo , Proliferação de Células , Dependovirus/metabolismo , Diabetes Mellitus Experimental/genética , Dieta Hiperlipídica , Glucose/metabolismo , Teste de Tolerância a Glucose , Glicólise , Insulina/metabolismo , Espaço Intracelular/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Transdução de Sinais , Transdução Genética , Regulação para Cima/genética
18.
JCI Insight ; 2(13)2017 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-28679961

RESUMO

Pancreatitis is more frequent in type 2 diabetes mellitus (T2DM), although the underlying cause is unknown. We tested the hypothesis that ongoing ß cell stress and apoptosis in T2DM induces ductal tree proliferation, particularly the pancreatic duct gland (PDG) compartment, and thus potentially obstructs exocrine outflow, a well-established cause of pancreatitis. PDG replication was increased 2-fold in human pancreas from individuals with T2DM, and was associated with increased pancreatic intraepithelial neoplasia (PanIN), lesions associated with pancreatic inflammation and with the potential to obstruct pancreatic outflow. Increased PDG replication in the prediabetic human-IAPP-transgenic (HIP) rat model of T2DM was concordant with increased ß cell stress but preceded metabolic derangement. Moreover, the most abundantly expressed chemokines released by the islets in response to ß cell stress in T2DM, CXCL1, -4, and -10, induced proliferation in human pancreatic ductal epithelium. Also, the diabetes medications reported as potential modifiers for the risk of pancreatitis in T2DM modulated PDG proliferation accordingly. We conclude that chronic stimulation and proliferation of the PDG compartment in response to islet inflammation in T2DM is a potentially novel mechanism that serves as a link to the increased risk for pancreatitis in T2DM and may potentially be modified by currently available diabetes therapy.

19.
Am J Physiol Endocrinol Metab ; 313(2): E213-E221, 2017 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-28465284

RESUMO

Metabolic state and circadian clock function exhibit a complex bidirectional relationship. Circadian disruption increases propensity for metabolic dysfunction, whereas common metabolic disorders such as obesity and type 2 diabetes (T2DM) are associated with impaired circadian rhythms. Specifically, alterations in glucose availability and glucose metabolism have been shown to modulate clock gene expression and function in vitro; however, to date, it is unknown whether development of diabetes imparts deleterious effects on the suprachiasmatic nucleus (SCN) circadian clock and SCN-driven outputs in vivo. To address this question, we undertook studies in aged diabetic rats transgenic for human islet amyloid polypeptide, an established nonobese model of T2DM (HIP rat), which develops metabolic defects closely recapitulating those present in patients with T2DM. HIP rats were also cross-bred with a clock gene reporter rat model (Per1:luciferase transgenic rat) to permit assessment of the SCN and the peripheral molecular clock function ex vivo. Utilizing these animal models, we examined effects of diabetes on 1) behavioral circadian rhythms, 2) photic entrainment of circadian activity, 3) SCN and peripheral tissue molecular clock function, and 4) melatonin secretion. We report that circadian activity, light-induced entrainment, molecular clockwork, as well as melatonin secretion are preserved in the HIP rat model of T2DM. These results suggest that despite the well-characterized ability of glucose to modulate circadian clock gene expression acutely in vitro, SCN clock function and key behavioral and physiological outputs appear to be preserved under chronic diabetic conditions characteristic of nonobese T2DM.


Assuntos
Comportamento Animal/fisiologia , Ritmo Circadiano/genética , Diabetes Mellitus Tipo 2 , Animais , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/patologia , Diabetes Mellitus Experimental/fisiopatologia , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/patologia , Diabetes Mellitus Tipo 2/fisiopatologia , Modelos Animais de Doenças , Progressão da Doença , Polipeptídeo Amiloide das Ilhotas Pancreáticas/genética , Polipeptídeo Amiloide das Ilhotas Pancreáticas/metabolismo , Luz , Masculino , Proteínas Circadianas Period/metabolismo , Ratos , Ratos Sprague-Dawley , Ratos Transgênicos , Núcleo Supraquiasmático/metabolismo , Núcleo Supraquiasmático/patologia
20.
Mol Endocrinol ; 29(5): 682-92, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25695910

RESUMO

Type 2 diabetes mellitus (T2DM) is characterized by pancreatic islet failure due to loss of ß-cell secretory function and mass. Studies have identified a link between a variance in the gene encoding melatonin (MT) receptor 2, T2DM, and impaired insulin secretion. This genetic linkage raises the question whether MT signaling plays a role in regulation of ß-cell function and survival in T2DM. To address this postulate, we used INS 832/13 cells to test whether activation of MT signaling attenuates proteotoxicity-induced ß-cell apoptosis and through which molecular mechanism. We also used nondiabetic and T2DM human islets to test the potential of MT signaling to attenuate deleterious effects of glucotoxicity and T2DM on ß-cell function. MT signaling in ß-cells (with duration designed to mimic typical nightly exposure) significantly enhanced activation of the cAMP-dependent signal transduction pathway and attenuated proteotoxicity-induced ß-cell apoptosis evidenced by reduced caspase-3 cleavage (∼40%), decreased activation of stress-activated protein kinase/Jun-amino-terminal kinase (∼50%) and diminished oxidative stress response. Activation of MT signaling in human islets was shown to restore glucose-stimulated insulin secretion in islets exposed to chronic hyperglycemia as well as in T2DM islets. Our data suggest that ß-cell MT signaling is important for the regulation of ß-cell survival and function and implies a preventative and therapeutic potential for preservation of ß-cell mass and function in T2DM.


Assuntos
Células Secretoras de Insulina/fisiologia , Melatonina/fisiologia , Animais , Linhagem Celular Tumoral , Sobrevivência Celular , Diabetes Mellitus Tipo 2/metabolismo , Humanos , Ratos , Receptores de Melatonina/metabolismo , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA