Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Front Immunol ; 15: 1350065, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38779686

RESUMO

Introduction: Immunological non-responders (INR) are people living with HIV (PLHIV) who fail to fully restore CD4+ T-cell counts despite complete viral suppression with antiretroviral therapy (ART). INR are at higher risk for non-HIV related morbidity and mortality. Previous research suggest persistent qualitative defects. Methods: The 2000HIV study (clinical trials NTC03994835) enrolled 1895 PLHIV, divided in a discovery and validation cohort. PLHIV with CD4 T-cell count <350 cells/mm3 after ≥2 years of suppressive ART were defined as INR and were compared to immunological responders (IR) with CD4 T-cell count >500 cells/mm3. Logistic and rank based regression were used to analyze clinical data, extensive innate and adaptive immunophenotyping, and ex vivo monocyte and lymphocyte cytokine production after stimulation with various stimuli. Results: The discovery cohort consisted of 62 INR and 1224 IR, the validation cohort of 26 INR and 243 IR. INR were older, had more advanced HIV disease before starting ART and had more frequently a history of non-AIDS related malignancy. INR had lower absolute CD4+ T-cell numbers in all subsets. Activated (HLA-DR+, CD38+) and exhausted (PD1+) subpopulations were proportionally increased in CD4 T-cells. Monocyte and granulocyte immunophenotypes were comparable. INR lymphocytes produced less IL-22, IFN-γ, IL-10 and IL-17 to stimuli. In contrast, monocyte cytokine production did not differ. The proportions of CD4+CD38+HLA-DR+ and CD4+PD1+ subpopulations showed an inversed correlation to lymphocyte cytokine production. Conclusions: INR compared to IR have hyperactivated and exhausted CD4+ T-cells in combination with lymphocyte functional impairment, while innate immune responses were comparable. Our data provide a rationale to consider the use of anti-PD1 therapy in INR.


Assuntos
Citocinas , Infecções por HIV , Imunossenescência , Humanos , Infecções por HIV/imunologia , Infecções por HIV/tratamento farmacológico , Masculino , Feminino , Citocinas/metabolismo , Pessoa de Meia-Idade , Adulto , Contagem de Linfócito CD4 , Linfócitos T CD4-Positivos/imunologia , Imunofenotipagem , Fármacos Anti-HIV/uso terapêutico , HIV-1/imunologia , Carga Viral
2.
Front Cell Infect Microbiol ; 13: 1202035, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37583444

RESUMO

Background: People living with human immunodeficiency virus (PLHIV) are exposed to chronic immune dysregulation, even when virus replication is suppressed by antiretroviral therapy (ART). Given the emerging role of the gut microbiome in immunity, we hypothesized that the gut microbiome may be related to the cytokine production capacity of PLHIV. Methods: To test this hypothesis, we collected metagenomic data from 143 ART-treated PLHIV and assessed the ex vivo production capacity of eight different cytokines [interleukin-1ß (IL-1ß), IL-6, IL-1Ra, IL-10, IL-17, IL-22, tumor necrosis factor, and interferon-γ] in response to different stimuli. We also characterized CD4+ T-cell counts, HIV reservoir, and other clinical parameters. Results: Compared with 190 age- and sex-matched controls and a second independent control cohort, PLHIV showed microbial dysbiosis that was correlated with viral reservoir levels (CD4+ T-cell-associated HIV-1 DNA), cytokine production capacity, and sexual behavior. Notably, we identified two genetically different P. copri strains that were enriched in either PLHIV or healthy controls. The control-related strain showed a stronger negative association with cytokine production capacity than the PLHIV-related strain, particularly for Pam3Cys-incuded IL-6 and IL-10 production. The control-related strain is also positively associated with CD4+ T-cell level. Conclusions: Our findings suggest that modulating the gut microbiome may be a strategy to modulate immune response in PLHIV.


Assuntos
Infecções por HIV , HIV , Humanos , Interleucina-10 , Interleucina-6 , Disbiose , Infecções por HIV/tratamento farmacológico , Citocinas
3.
Cell Rep ; 42(6): 112658, 2023 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-37330914

RESUMO

Itaconate is an immunomodulatory metabolite produced by immune cells under microbial stimulation and certain pro-inflammatory conditions and triggers antioxidant and anti-inflammatory responses. We show that dimethyl itaconate, a derivative of itaconate previously linked to suppression of inflammation and widely employed as an alternative to the endogenous metabolite, can induce long-term transcriptional, epigenomic, and metabolic changes, characteristic of trained immunity. Dimethyl itaconate alters glycolytic and mitochondrial energetic metabolism, ultimately leading to increased responsiveness to microbial ligand stimulation. Subsequently, mice treated with dimethyl itaconate present increased survival to infection with Staphylococcus aureus. Additionally, itaconate levels in human plasma correlate with enhanced ex vivo pro-inflammatory cytokine production. Collectively, these findings demonstrate that dimethyl itaconate displays short-term anti-inflammatory characteristics and the capacity to induce long-term trained immunity. This pro-and anti-inflammatory dichotomy of dimethyl itaconate is likely to induce complex immune responses and should be contemplated when considering itaconate derivatives in a therapeutic context.


Assuntos
Imunidade Inata , Macrófagos , Camundongos , Humanos , Animais , Macrófagos/metabolismo , Anti-Inflamatórios/metabolismo
4.
iScience ; 25(10): 105089, 2022 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-36157576

RESUMO

Despite antiretroviral therapy (ART), people living with HIV (PLHIV) display persistent inflammation leading to non-AIDS-related co-morbidities. To better understand underlying mechanisms, we compared targeted plasma inflammatory protein concentration (n = 92) between a cohort of 192 virally suppressed PLHIV, who were followed-up for five years, and 416 healthy controls (HC). Findings were validated in an independent cohort of 649 virally suppressed PLHIV and 98 HC. Compared to HC, PLHIV exhibited distinctively upregulated inflammatory proteins, including mucosal defense chemokines, CCR5 and CXCR3 ligands, and growth factors. Unsupervised clustering of inflammatory proteins clearly differentiated PLHIV with low (n = 123) and high inflammation (n = 65), the latter having a 3.4 relative risk (95% confidence interval 1.2-9.8) to develop malignancies and trend for cardiovascular events during a 5-year follow-up. The best protein predictors discriminating the two inflammatory endotypes were PD-L1, VEGFA, LAP TGF ß-1, and TNFRSF9. Our data provide insights into co-morbidities associated inflammatory changes in PLHIV on long-term ART.

5.
Sci Adv ; 8(31): eabn4002, 2022 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-35930640

RESUMO

Trained immunity describes the capacity of innate immune cells to develop heterologous memory in response to certain exogenous exposures. This phenomenon mediates, at least in part, the beneficial off-target effects of the BCG vaccine. Using an in vitro model of trained immunity, we show that BCG exposure induces a persistent change in active histone modifications, DNA methylation, transcription, and adenosine-to-inosine RNA modification in human monocytes. By profiling DNA methylation of circulating monocytes from infants in the MIS BAIR clinical trial, we identify a BCG-associated DNA methylation signature that persisted more than 12 months after neonatal BCG vaccination. Genes associated with this epigenetic signature are involved in viral response pathways, consistent with the reported off-target protection against viral infections in neonates, adults, and the elderly. Our findings indicate that the off-target effects of BCG in infants are accompanied by epigenetic remodeling of circulating monocytes that lasts more than 1 year.


Assuntos
Vacina BCG , Viroses , Adulto , Idoso , Metilação de DNA , Humanos , Recém-Nascido , Monócitos , Vacinação , Viroses/metabolismo
6.
Redox Biol ; 55: 102391, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35834984

RESUMO

Reactive oxygen species (ROS) are an essential component of the host defense against fungal infections. However, little is known about how common genetic variation affects ROS-mediated antifungal host defense. In the present study, we investigated the genetic factors that regulate ROS production capacity in response to the two human fungal pathogens: Candida albicans and Aspergillus fumigatus. We investigated fungal-stimulated ROS production by immune cells isolated from a population-based cohort of approximately 200 healthy individuals (200FG cohort), and mapped ROS-quantitative trait loci (QTLs). We identified several genetic loci that regulate ROS levels (P < 9.99 × 10-6), with some of these loci being pathogen-specific, and others shared between the two fungi. These ROS-QTLs were investigated for their influence on the risk of invasive pulmonary aspergillosis (IPA) in a disease relevant context. We stratified hematopoietic stem-cell transplant (HSCT) recipients based on the donor's SNP genotype and tested their impact on the risk of IPA. We identified rs4685368 as a ROS-QTL locus that was significantly associated with an increased risk of IPA after controlling for patient age and sex, hematological malignancy, type of transplantation, conditioning regimen, acute graft-versus-host-disease grades III-IV, and antifungal prophylaxis. Collectively, this data provides evidence that common genetic variation can influence ROS production capacity, and, importantly, the risk of developing IPA among HSCT recipients. This evidence warrants further research for patient stratification based on the genetic profiling that would allow the identifications of patients at high-risk for an invasive fungal infection, and who would benefit the most from a preventive strategy.

7.
J Leukoc Biol ; 112(2): 279-288, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35040511

RESUMO

Atherosclerotic cardiovascular diseases (CVD) are among the leading causes of death in the world. Monocyte-derived macrophages are key players in the pathophysiology of atherosclerosis. Innate immune memory following exposure of monocytes to atherogenic compounds, such as oxidized low-density lipoproteins (oxLDL), termed trained immunity, can contribute to atherogenesis. The current study aimed to elucidate intracellular mechanisms of oxLDL-induced trained immunity. Using untargeted intracellular metabolomics in isolated human primary monocytes, we show that oxLDL-induced trained immunity results in alterations in the balance of intracellular steroid hormones in monocytes. This was reflected by a decrease in extracellular progesterone concentrations following LPS stimulation. To understand the potential effects of steroid hormones on trained immunity, monocytes were costimulated with oxLDL and the steroid hormones progesterone, hydrocortisone, dexamethasone, ß-estradiol, and dihydrotestosterone. Progesterone showed a unique ability to attenuate the enhanced TNFα and IL-6 production following oxLDL-induced trained immunity. Single nucleotide polymorphisms in the nuclear glucocorticoid, progesterone, and mineralocorticoid receptor were shown to correlate with ex vivo oxLDL-induced trained immunity in 243 healthy volunteers. Pharmacologic inhibition experiments revealed that progesterone exerts the suppression of TNFα in trained immunity via the nuclear glucocorticoid and mineralocorticoid receptors. Our data show that progesterone has a unique ability to suppress oxLDL-induced trained immunity. We hypothesize that this effect might contribute to the lower incidence of CVD in premenopausal women.


Assuntos
Aterosclerose , Monócitos , Feminino , Glucocorticoides/farmacologia , Humanos , Lipoproteínas LDL/farmacologia , Progesterona/farmacologia , Fator de Necrose Tumoral alfa/farmacologia
8.
Cells ; 10(5)2021 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-33919212

RESUMO

The innate immune system displays heterologous memory characteristics, which are characterized by stronger responses to a secondary challenge. This phenomenon termed trained immunity relies on epigenetic and metabolic rewiring of innate immune cells. As reactive oxygen species (ROS) production has been associated with the trained immunity phenotype, we hypothesized that the increased ROS levels and the main intracellular redox molecule glutathione play a role in the induction of trained immunity. Here we show that pharmacological inhibition of ROS in an in vitro model of trained immunity did not influence cell responsiveness; the modulation of glutathione levels reduced pro-inflammatory cytokine production in human monocytes. Single nucleotide polymorphisms (SNPs) in genes involved in glutathione metabolism were found to be associated with changes in pro-inflammatory cytokine production capacity upon trained immunity. Also, plasma glutathione concentrations were positively associated with ex vivo IL-1ß production, a biomarker of trained immunity, produced by monocytes of BCG-vaccinated individuals. In conclusion, glutathione metabolism is involved in the induction of trained immunity, and future studies are warranted to explore its functional consequences in human diseases.


Assuntos
Citocinas/imunologia , Glutationa/metabolismo , Doenças do Sistema Imunitário/imunologia , Imunidade Inata , Memória Imunológica , Espécies Reativas de Oxigênio/imunologia , Células Cultivadas , Humanos , Monócitos
9.
Front Immunol ; 10: 2508, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31708927

RESUMO

In sepsis, dysregulated immune responses to infections cause damage to the host. Previous studies have attempted to capture pathogen-induced leukocyte responses. However, the impact of mediators released after pathogen-leukocyte interaction on endothelial cells, and how endothelial cell responses vary depending on the pathogen-type is lacking. Here, we comprehensively characterized the transcriptomic responses of human leukocytes and endothelial cells to Gram negative-bacteria, Gram positive-bacteria, and fungi. We showed that whole pathogen lysates induced strong activation of leukocytes but not endothelial cells. Interestingly, the common response of leukocytes to various pathogens converges on endothelial activation. By exposing endothelial cells to leukocyte-released mediators, we observed a strong activation of endothelial cells at both transcription and protein levels. By adding IL-1RA and TNF-α antibody in leukocyte-released mediators before exposing to endothelial cells, we identified specific roles for IL-1 and TNF-α in driving the most, but not all, endothelial activation. We also showed for the first time, activation of interferon response by endothelial cells in response to leukocyte-released mediators, independently from IL-1 and TNF-α pathways. Our study therefore, not only provides pathogen-dependent transcriptional changes in leukocytes and endothelial cells during infections, but also reveals a role for IFN, together with IL1 and TNFα signaling, in mediating leukocyte-endothelial interaction in infections.


Assuntos
Infecções Bacterianas/imunologia , Células Endoteliais/fisiologia , Interferons/fisiologia , Interleucina-1/fisiologia , Leucócitos/fisiologia , Micoses/imunologia , Fator de Necrose Tumoral alfa/fisiologia , Comunicação Celular , Células Cultivadas , Humanos , Transdução de Sinais
10.
Front Immunol ; 10: 1949, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31475010

RESUMO

Due to limited sepsis patient cohort size and extreme heterogeneity, only one significant locus and suggestive associations at several independent loci were implicated by three genome-wide association studies. However, genes from such suggestive loci may also provide crucial information to unravel genetic mechanisms that determine sepsis heterogeneity. Therefore, in this study, we made use of integrative approaches to prioritize genes and pathways affected by sepsis associated genetic variants. By integrating expression quantitative trait loci (eQTL) results from the largest whole-blood eQTL database, cytokine QTLs from pathogen-stimulated peripheral blood mononuclear cells (PBMCs), publicly available blood transcriptome data from pneumoniae-derived sepsis patients, and transcriptome data from pathogen-stimulated PBMCs, we identified 55 potential genes affected by 39 independent loci. By performing pathway enrichment analysis at these loci we found enrichment of genes for adherences-junction pathway. Finally, we investigated the functional role of the only one GWAS significant SNP rs4957796 on sepsis survival in altering transcription factor binding affinity in monocytes and endothelial cells. We also found that transient deficiency of FER and MAN2A1 affect endothelial response to stimulation, indicating that both FER and MAN2A1 could be the causal genes at this locus. Taken together, our study suggests that in addition to immune pathways, genetic variants may also affect non-immune related pathways.


Assuntos
Células Endoteliais/metabolismo , Predisposição Genética para Doença/genética , Estudo de Associação Genômica Ampla/métodos , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas/genética , Sepse/genética , Células Cultivadas , Células Endoteliais/imunologia , Humanos , Leucócitos Mononucleares/metabolismo , Proteínas Tirosina Quinases/genética , Transdução de Sinais/genética , Transdução de Sinais/imunologia , Células THP-1 , Transcriptoma/genética , alfa-Manosidase/genética
11.
J Infect Dis ; 220(5): 862-872, 2019 07 31.
Artigo em Inglês | MEDLINE | ID: mdl-31241743

RESUMO

BACKGROUND: Candidemia, one of the most common causes of fungal bloodstream infection, leads to mortality rates up to 40% in affected patients. Understanding genetic mechanisms for differential susceptibility to candidemia may aid in designing host-directed therapies. METHODS: We performed the first genome-wide association study on candidemia, and we integrated these data with variants that affect cytokines in different cellular systems stimulated with Candida albicans. RESULTS: We observed strong association between candidemia and a variant, rs8028958, that significantly affects the expression levels of PLA2G4B in blood. We found that up to 35% of the susceptibility loci affect in vitro cytokine production in response to Candida. Furthermore, potential causal genes located within these loci are enriched for lipid and arachidonic acid metabolism. Using an independent cohort, we also showed that the numbers of risk alleles at these loci are negatively correlated with reactive oxygen species and interleukin-6 levels in response to Candida. Finally, there was a significant correlation between susceptibility and allelic scores based on 16 independent candidemia-associated single-nucleotide polymorphisms that affect monocyte-derived cytokines, but not with T cell-derived cytokines. CONCLUSIONS: Our results prioritize the disturbed lipid homeostasis and oxidative stress as potential mechanisms that affect monocyte-derived cytokines to influence susceptibility to candidemia.


Assuntos
Candida albicans/imunologia , Candidemia/genética , Estudo de Associação Genômica Ampla , Genômica , Alelos , Candida albicans/patogenicidade , Candidemia/microbiologia , Cromossomos Humanos Par 15 , Estudos de Coortes , Citocinas/sangue , Citocinas/genética , Citocinas/metabolismo , Suscetibilidade a Doenças , Loci Gênicos , Fosfolipases A2 do Grupo IV/sangue , Fosfolipases A2 do Grupo IV/genética , Fosfolipases A2 do Grupo IV/metabolismo , Homeostase , Interações Hospedeiro-Patógeno/genética , Interações Hospedeiro-Patógeno/imunologia , Humanos , Interleucina-6/genética , Estresse Oxidativo , Espécies Reativas de Oxigênio/metabolismo
12.
J Immunol ; 202(11): 3256-3266, 2019 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-31010852

RESUMO

Tetraspanins are a family of proteins possessing four transmembrane domains that help in lateral organization of plasma membrane proteins. These proteins interact with each other as well as other receptors and signaling proteins, resulting in functional complexes called "tetraspanin microdomains." Tetraspanins, including CD82, play an essential role in the pathogenesis of fungal infections. Dectin-1, a receptor for the fungal cell wall carbohydrate ß-1,3-glucan, is vital to host defense against fungal infections. The current study identifies a novel association between tetraspanin CD82 and Dectin-1 on the plasma membrane of Candida albicans-containing phagosomes independent of phagocytic ability. Deletion of CD82 in mice resulted in diminished fungicidal activity, increased C. albicans viability within macrophages, and decreased cytokine production (TNF-α, IL-1ß) at both mRNA and protein level in macrophages. Additionally, CD82 organized Dectin-1 clustering in the phagocytic cup. Deletion of CD82 modulates Dectin-1 signaling, resulting in a reduction of Src and Syk phosphorylation and reactive oxygen species production. CD82 knockout mice were more susceptible to C. albicans as compared with wild-type mice. Furthermore, patient C. albicans-induced cytokine production was influenced by two human CD82 single nucleotide polymorphisms, whereas an additional CD82 single nucleotide polymorphism increased the risk for candidemia independent of cytokine production. Together, these data demonstrate that CD82 organizes the proper assembly of Dectin-1 signaling machinery in response to C. albicans.


Assuntos
Candida albicans/fisiologia , Candidíase/metabolismo , Membrana Celular/metabolismo , Proteína Kangai-1/metabolismo , Lectinas Tipo C/metabolismo , Macrófagos/imunologia , Fagossomos/metabolismo , Animais , Candidíase/imunologia , Linhagem Celular , Predisposição Genética para Doença , Humanos , Imunidade Celular , Interleucina-1beta/metabolismo , Proteína Kangai-1/genética , Lectinas Tipo C/genética , Microdomínios da Membrana/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Polimorfismo de Nucleotídeo Único , Transdução de Sinais , Fator de Necrose Tumoral alfa/metabolismo
13.
J Infect Dis ; 219(10): 1662-1670, 2019 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-30541099

RESUMO

BACKGROUND: Rewiring cellular metabolism is important for activation of immune cells during host defense against Mycobacterium tuberculosis. Glutamine has been implicated as an immunomodulatory nutrient, but its role in the response to M. tuberculosis is unknown. METHODS: We assessed expression of glutamine pathway genes in M. tuberculosis-infected macrophages and blood transcriptomic profiles of individuals with latent M. tuberculosis infection or tuberculosis. Subsequently, we studied the effect of blocking glutaminolysis on M. tuberculosis-induced cytokines. Finally, we examined whether polymorphisms in genes involved in the glutamine pathway influence M. tuberculosis-induced cytokines in a cohort of 500 individuals. RESULTS: Glutamine pathway genes were differentially expressed in infected macrophages and patients with tuberculosis. Human peripheral blood mononuclear cells stimulated with M. tuberculosis displayed decreased cytokine (ie, interleukin 1ß, interferon γ, and interleukin 17) responses when medium was devoid of glutamine. Specific inhibitors of the glutamine pathway led to decreased cytokine responses, especially T-cell cytokines (ie, interferon γ, interleukin 17, and interleukin 22). Finally, genetic polymorphisms in glutamine metabolism genes (including GLS2, SLC1A5, and SLC7A5) influenced ex vivo cytokine responses to M. tuberculosis, especially for T-cell cytokines. CONCLUSIONS: Cellular glutamine metabolism is implicated in effective host responses against M. tuberculosis. Targeting immunometabolism may represent new strategies for tuberculosis prevention and/or treatment.


Assuntos
Glutamina/metabolismo , Mycobacterium tuberculosis/fisiologia , Tuberculose/imunologia , Células Cultivadas , Citocinas/metabolismo , Perfilação da Expressão Gênica , Humanos , Tuberculose Latente/imunologia , Tuberculose Latente/metabolismo , Leucócitos Mononucleares/imunologia , Leucócitos Mononucleares/metabolismo , Macrófagos/metabolismo , Polimorfismo Genético , Tuberculose/metabolismo
14.
Nat Med ; 22(8): 952-60, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27376574

RESUMO

Little is known about the inter-individual variation of cytokine responses to different pathogens in healthy individuals. To systematically describe cytokine responses elicited by distinct pathogens and to determine the effect of genetic variation on cytokine production, we profiled cytokines produced by peripheral blood mononuclear cells from 197 individuals of European origin from the 200 Functional Genomics (200FG) cohort in the Human Functional Genomics Project (http://www.humanfunctionalgenomics.org), obtained over three different years. We compared bacteria- and fungi-induced cytokine profiles and found that most cytokine responses were organized around a physiological response to specific pathogens, rather than around a particular immune pathway or cytokine. We then correlated genome-wide single-nucleotide polymorphism (SNP) genotypes with cytokine abundance and identified six cytokine quantitative trait loci (QTLs). Among them, a cytokine QTL at the NAA35-GOLM1 locus markedly modulated interleukin (IL)-6 production in response to multiple pathogens and was associated with susceptibility to candidemia. Furthermore, the cytokine QTLs that we identified were enriched among SNPs previously associated with infectious diseases and heart diseases. These data reveal and begin to explain the variability in cytokine production by human immune cells in response to pathogens.


Assuntos
Bactérias/imunologia , Citocinas/imunologia , Fungos/imunologia , Variação Genética , Imunidade Inata/imunologia , Leucócitos Mononucleares/imunologia , Adulto , Idoso , Aspergillus fumigatus/imunologia , Bacteroides fragilis/imunologia , Candida albicans/imunologia , Candidemia/imunologia , Cromossomos Humanos Par 1/genética , Cromossomos Humanos Par 7/genética , Escherichia coli/imunologia , Feminino , Perfilação da Expressão Gênica , Genótipo , Humanos , Fenômenos Imunogenéticos , Individualidade , Interleucina-6/imunologia , Masculino , Proteínas de Membrana/genética , Pessoa de Meia-Idade , Mycobacterium tuberculosis/imunologia , Acetiltransferase N-Terminal C/genética , Fenótipo , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , Staphylococcus aureus/imunologia , População Branca/genética , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA