Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 23(10)2022 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-35628297

RESUMO

Human T cell leukemia virus type 1 (HTLV-1) was identified as the first pathogenic human retrovirus and is estimated to infect 5 to 10 million individuals worldwide. Unlike other retroviruses, there is no effective therapy to prevent the onset of the most alarming diseases caused by HTLV-1, and the more severe cases manifest as the malignant phenotype of adult T cell leukemia (ATL). MicroRNA (miRNA) dysfunction is a common feature of leukemogenesis, and it is no different in ATL cases. Therefore, we sought to analyze studies that reported deregulated miRNA expression in HTLV-1 infected cells and patients' samples to understand how this deregulation could induce malignancy. Through in silico analysis, we identified 12 miRNAs that stood out in the prediction of targets, and we performed functional annotation of the genes linked to these 12 miRNAs that appeared to have a major biological interaction. A total of 90 genes were enriched in 14 KEGG pathways with significant values, including TP53, WNT, MAPK, TGF-ß, and Ras signaling pathways. These miRNAs and gene interactions are discussed in further detail for elucidation of how they may act as probable drivers for ATL onset, and while our data provide solid starting points for comprehension of miRNAs' roles in HTLV-1 infection, continuous effort in oncologic research is still needed to improve our understanding of HTLV-1 induced leukemia.


Assuntos
Infecções por HTLV-I , Leucemia-Linfoma de Células T do Adulto , MicroRNAs , Biologia Computacional , Infecções por HTLV-I/genética , Vírus Linfotrópico T Tipo 1 Humano , Humanos , Leucemia-Linfoma de Células T do Adulto/genética , Leucemia-Linfoma de Células T do Adulto/virologia , MicroRNAs/genética
2.
Sci Rep ; 10(1): 21272, 2020 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-33277547

RESUMO

Aurora kinases (AURKA and AURKB) are mitotic kinases with an important role in the regulation of several mitotic events, and in hematological malignancies, AURKA and AURKB hyperexpression are found in patients with cytogenetic abnormalities presenting a unfavorable prognosis. The aim of this study was evaluated the mRNA expression profile of pediatric Acute Lymphoblastic Leukaemia (ALL) patients and the efficacy of two AURKA and AURKB designed inhibitors (GW809897X and GW806742X) in a leukemia cell line as a potential novel therapy for ALL patients. Cellular experiments demonstrated that both inhibitors induced cell death with caspase activation and cell cycle arrest, however only the GW806742X inhibitor decreased with more efficacy AURKA and AURKB expression in K-562 leukemia cells. In ALL patients both AURKA and AURKB showed a significant overexpression, when compared to health controls. Moreover, AURKB expression level was significant higher than AURKA in patients, and predicted a poorer prognosis with significantly lower survival rates. No differences were found in AURKA and AURKB expression between gene fusions, immunophenotypic groups, white blood cells count, gender or age. In summary, the results in this study indicates that the AURKA and AURKB overexpression are important findings in pediatric ALL, and designed inhibitor, GW806742X tested in vitro were able to effectively inhibit the gene expression of both aurora kinases and induce apoptosis in K-562 cells, however our data clearly shown that AURKB proves to be a singular finding and potential prognostic biomarker that may be used as a promising therapeutic target to those patients.


Assuntos
Aurora Quinase A/metabolismo , Aurora Quinase B/metabolismo , Leucemia-Linfoma Linfoblástico de Células Precursoras/enzimologia , Biomarcadores Tumorais/metabolismo , Brasil/epidemiologia , Estudos de Casos e Controles , Criança , Pré-Escolar , Feminino , Proteínas de Fusão bcr-abl/metabolismo , Humanos , Lactente , Células K562 , Masculino , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/mortalidade , Mapas de Interação de Proteínas
3.
Biomolecules ; 10(8)2020 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-32806499

RESUMO

Platelet concentrate (PC) transfusions are widely used to save the lives of patients who experience acute blood loss. MicroRNAs (miRNAs) comprise a class of molecules with a biological role which is relevant to the understanding of storage lesions in blood banks. We used a new approach to identify miRNAs in normal human platelet sRNA-Seq data from the GSE61856 repository. We identified a comprehensive miRNA expression profile, where we detected 20 of these transcripts potentially expressed in PCs stored for seven days, which had their expression levels analyzed with simulations of computational biology. Our results identified a new collection of miRNAs (miR-486-5p, miR-92a-3p, miR-103a-3p, miR-151a-3p, miR-181a-5p, and miR-221-3p) that showed a sensitivity expression pattern due to biological platelet changes during storage, confirmed by additional quantitative real-time polymerase chain reaction (qPCR) validation on 100 PC units from 500 healthy donors. We also identified that these miRNAs could transfer regulatory information on platelets, such as members of the let-7 family, by regulating the YOD1 gene, which is a deubiquitinating enzyme highly expressed in platelet hyperactivity. Our results also showed that the target genes of these miRNAs play important roles in signaling pathways, cell cycle, stress response, platelet activation and cancer. In summary, the miRNAs described in this study, have a promising application in transfusion medicine as potential biomarkers to also measure the quality and viability of the PC during storage in blood banks.


Assuntos
Plaquetas/química , Biologia Computacional/métodos , Perfilação da Expressão Gênica/métodos , MicroRNAs/sangue , Bancos de Sangue , Coleta de Amostras Sanguíneas , Bases de Dados Genéticas , Feminino , Regulação da Expressão Gênica , Redes Reguladoras de Genes , Humanos , Masculino
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA