RESUMO
Corticotropin-releasing hormone (CRH) was discovered for its role as a brain neurohormone controlling the corticotropic axis in vertebrates. An additional crh gene, crh2, paralog of crh (crh1), and likely resulting from the second round (2R) of vertebrate whole genome duplication (WGD), was identified in a holocephalan chondrichthyan, in basal mammals, various sauropsids and a non-teleost actinopterygian holostean. It was suggested that crh2 has been recurrently lost in some vertebrate groups including teleosts. We further investigated the fate of crh1 and crh2 in vertebrates with a special focus on teleosts. Phylogenetic and synteny analyses showed the presence of duplicated crh1 paralogs, crh1a and crh1b, in most teleosts, resulting from the teleost-specific WGD (3R). Crh1b is conserved in all teleosts studied, while crh1a has been lost independently in some species. Additional crh1 paralogs are present in carps and salmonids, resulting from specific WGD in these lineages. We identified crh2 gene in additional vertebrate groups such as chondrichthyan elasmobranchs, sarcopterygians including dipnoans and amphibians, and basal actinoperygians, Polypteridae and Chondrostei. We also revealed the presence of crh2 in teleosts, including elopomorphs, osteoglossomorphs, clupeiforms, and ostariophysians, while it would have been lost in Euteleostei along with some other groups. To get some insights on the functional evolution of the crh paralogs, we compared their primary and 3D structure, and by qPCR their tissue distribution, in two representative species, the European eel, which possesses three crh paralogs (crh1a, crh1b, crh2), and the Atlantic salmon, which possesses four crh paralogs of the crh1-type. All peptides conserved the structural characteristics of human CRH. Eel crh1b and both salmon crh1b genes were mainly expressed in the brain, supporting the major role of crh1b paralogs in controlling the corticotropic axis in teleosts. In contrast, crh1a paralogs were mainly expressed in peripheral tissues such as muscle and heart, in eel and salmon, reflecting a striking subfunctionalization between crh1a and b paralogs. Eel crh2 was weakly expressed in the brain and peripheral tissues. These results revisit the repertoire of crh in teleosts and highlight functional divergences that may have contributed to the differential conservation of various crh paralogs in teleosts.
Assuntos
Hormônio Liberador da Corticotropina , Salmo salar , Animais , Encéfalo , Hormônio Liberador da Corticotropina/genética , Humanos , Mamíferos , Filogenia , SinteniaRESUMO
Seasonal timing is important for many critical life history events of vertebrates, and photoperiod is often used as a reliable seasonal cue. In mammals and birds, it has been established that a photoperiod-driven seasonal clock resides in the brain and pituitary, and is driven by increased levels of pituitary thyroid stimulating hormone (TSH) and brain type 2 iodothyronine deiodinase (DIO2), which leads to local increases in triiodothyronine (T3). In order to determine if a similar mechanism occurs in fish, we conducted photoperiod manipulations in anadromous (migratory) Atlantic salmon (Salmo salar) that use photoperiod to time the preparatory development of salinity tolerance which accompanies downstream migration in spring. Changing daylength from short days (light:dark (LD) 10:14) to long days (LD 16:8) for 20 days increased gill Na+/K+-ATPase (NKA) activity, gill NKAα1b abundance and plasma growth hormone (GH) levels that normally accompany increased salinity tolerance of salmon in spring. Long-day exposure resulted in five-fold increases in pituitary tshßb mRNA levels after 10 days and were sustained for at least 20 days. tshßb mRNA levels in the saccus vasculosus were low and not influenced by photoperiod. Increased daylength resulted in significant increases in dio2b mRNA levels in the hypothalamus and midbrain/optic tectum regions of the brain. The results are consistent with the presence of a photoperiod-driven seasonal clock in fish which involves pituitary TSH, brain DIO2 and the subsequent production of T3, supporting the hypothesis that this is a common feature of photoperiodic regulation of seasonality in vertebrates.
Assuntos
Encéfalo/enzimologia , Iodeto Peroxidase/metabolismo , Fotoperíodo , Hipófise/metabolismo , Salmo salar/fisiologia , Tireotropina/metabolismo , Animais , Brânquias/metabolismo , Modelos Biológicos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , ATPase Trocadora de Sódio-Potássio/metabolismo , Distribuição TecidualRESUMO
We recently characterized two paralogs of the thyrotropin (TSH) beta subunit in Atlantic salmon, tshßa and tshßb, issued from teleost-specific whole genome duplication. The transcript expression of tshßb, but not of tshßa, peaks at the time of smoltification, which revealed a specific involvement of tshßb paralog in this metamorphic event. Tshßa and tshßb are expressed by distinct pituitary cells in salmon, likely related to TSH cells from the pars distalis and pars tuberalis, respectively, in mammals and birds. The present study aimed at investigating the neuroendocrine and endocrine factors potentially involved in the differential regulation of tshßa and tshßb paralogs, using primary cultures of Atlantic salmon pituitary cells. The effects of various neurohormones and endocrine factors potentially involved in the control of development, growth, and metabolism were tested. Transcript levels of tshßa and tshßb were measured by qPCR, as well as those of growth hormone (gh), for comparison and validation. Corticotropin-releasing hormone (CRH) stimulated tshßa transcript levels in agreement with its potential role in the thyrotropic axis in teleosts, but had no effect on tshßb paralog, while it also stimulated gh transcript levels. Thyrotropin-releasing hormone (TRH) had no effect on neither tshß paralogs nor gh. Somatostatin (SRIH) had no effects on both tshß paralogs, while it exerted a canonical inhibitory effect on gh transcript levels. Thyroid hormones [triiodothyronine (T3) and thyroxine (T4)] inhibited transcript levels of both tshß paralogs, as well as gh, but with a much stronger effect on tshßa than on tshßb and gh. Conversely, cortisol had a stronger inhibitory effect on tshßb than tshßa, while no effect on gh. Remarkably, insulin-like growth factor 1 (IGF1) dose-dependently stimulated tshßb transcript levels, while it had no effect on tshßa, and a classical inhibitory effect on gh. This study provides the first data on the neuroendocrine factors involved in the differential regulation of the expression of the two tshß paralogs. It suggests that IGF1 may be involved in triggering the expression peak of the tshßb paralog at smoltification, thus representing a potential internal signal in the link between body growth and smoltification metamorphosis.
Assuntos
Células Endócrinas/metabolismo , Proteínas de Peixes/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Hipófise/metabolismo , Salmo salar/metabolismo , Hormônios Tireóideos/farmacologia , Tireotropina Subunidade beta/metabolismo , Animais , Células Endócrinas/efeitos dos fármacos , Proteínas de Peixes/genética , Técnicas In Vitro , Hipófise/efeitos dos fármacos , Salmo salar/genética , Salmo salar/crescimento & desenvolvimento , Tireotropina Subunidade beta/genéticaRESUMO
Reproduction in vertebrates is controlled by the brain-pituitary-gonad axis, where the two gonadotropins follicle-stimulating hormone (Fsh) and luteinizing hormone (Lh) play vital parts by activating their cognate receptors in the gonads. The main purpose of this work was to study intra- and interspecies ligand promiscuity of teleost gonadotropin receptors, since teleost receptor specificity is unclear, in contrast to mammalian receptors. Receptor activation was investigated by transfecting COS-7 cells with either Fsh receptor (mdFshr, tiFshr) or Lh receptor (mdLhr, tiLhr), and tested for activation by recombinant homologous and heterologous ligands (mdFshßα, mdLhßα, tiFshßα, tiLhßα) from two representative fish orders, Japanese medaka (Oryzias latipes, Beloniformes) and Nile tilapia (Oreochromis niloticus, Cichliformes). Results showed that each gonadotropin preferentially activates its own cognate receptor. Cross-reactivity was detected to some extent as mdFshßα was able to activate the mdLhr, and mdLhßα the mdFshr. Medaka pituitary extract (MPE) stimulated CRE-LUC activity in COS-7 cells expressing mdlhr, but could not stimulate cells expressing mdfshr. Recombinant tiLhßα, tiFshßα and tilapia pituitary extract (TPE) could activate the mdLhr, suggesting cross-species reactivity for mdLhr. Cross-species reactivity was also detected for mdFshr due to activation by tiFshßα, tiLhßα, and TPE, as well as for tiFshr and tiLhr due to stimulation by mdFshßα, mdLhßα, and MPE. Tissue distribution analysis of gene expression revealed that medaka receptors, fshr and lhr, are highly expressed in both ovary and testis. High expression levels were found for lhr also in brain, while fshr was expressed at low levels. Both fshr and lhr mRNA levels increased significantly during testis development. Amino acid sequence alignment and three-dimensional modelling of ligands and receptors highlighted conserved beta sheet domains of both Fsh and Lh between Japanese medaka and Nile tilapia. It also showed a higher structural homology and similarity of transmembrane regions of Lhr between both species, in contrast to Fshr, possibly related to the substitution of the conserved cysteine residue in the transmembrane domain 6 in medaka Fshr with glycine. Taken together, this is the first characterization of medaka Fshr and Lhr using homologous ligands, enabling to better understand teleost hormone-receptor interactions and specificities. The data suggest partial ligand promiscuity and cross-species reactivity between gonadotropins and their receptors in medaka and tilapia.
Assuntos
Oryzias/metabolismo , Receptores do FSH/metabolismo , Receptores do LH/metabolismo , Sequência de Aminoácidos , Animais , Células COS , Chlorocebus aethiops , Feminino , Hormônio Foliculoestimulante/química , Hormônio Foliculoestimulante/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Hormônio Luteinizante/química , Hormônio Luteinizante/metabolismo , Masculino , Modelos Moleculares , Receptores do FSH/genética , Receptores da Gonadotropina/metabolismo , Receptores do LH/genética , Transdução de SinaisRESUMO
Melatonin is a key hormone involved in the photoperiodic signaling pathway. In both teleosts and mammals, melatonin produced in the pineal gland at night is released into the blood and cerebrospinal fluid, providing rhythmic information to the whole organism. Melatonin acts via specific receptors, allowing the synchronization of daily and annual physiological rhythms to environmental conditions. The pituitary gland, which produces several hormones involved in a variety of physiological processes such as growth, metabolism, stress and reproduction, is an important target of melatonin. Melatonin modulates pituitary cellular activities, adjusting the synthesis and release of the different pituitary hormones to the functional demands, which changes during the day, seasons and life stages. It is, however, not always clear whether melatonin acts directly or indirectly on the pituitary. Indeed, melatonin also acts both upstream, on brain centers that control the pituitary hormone production and release, as well as downstream, on the tissues targeted by the pituitary hormones, which provide positive and negative feedback to the pituitary gland. In this review, we describe the known pathways through which melatonin modulates anterior pituitary hormonal production, distinguishing indirect effects mediated by brain centers from direct effects on the anterior pituitary. We also highlight similarities and differences between teleosts and mammals, drawing attention to knowledge gaps, and suggesting aims for future research.
Assuntos
Antioxidantes/farmacologia , Plasticidade Celular , Melatonina/farmacologia , Adeno-Hipófise/efeitos dos fármacos , Hormônios Adeno-Hipofisários/metabolismo , Animais , Peixes , MamíferosRESUMO
The hormone melatonin connects environmental cues, such as photoperiod and temperature, with a number of physiological and behavioural processes, including seasonal reproduction, through binding to their cognate receptors. This study reports the structural, functional and physiological characterization of five high-affinity melatonin receptors (Mtnr1aaα, Mtnr1aaß, Mtnr1ab, Mtnr1al, Mtnr1b) in Atlantic salmon. Phylogenetic analysis clustered salmon melatonin receptors into three monophyletic groups, Mtnr1A, Mtnr1Al and Mtnr1B, but no functional representative of the Mtnr1C group. Contrary to previous studies in vertebrates, pharmacological characterization of four receptors in COS-7, CHO and SH-SY5Y cell lines (Mtnr1Aaα, Mtnr1Aaß, Mtnr1Ab, Mtnr1B) showed induction of intracellular cAMP levels following 2-iodomelatonin or melatonin exposure. No consistent response was measured after N-acetyl-serotonin or serotonin exposure. Melatonin receptor genes were expressed at all levels of the hypothalamo-pituitary-gonad axis, with three genes (mtnr1aaß, mtnr1ab and mtnr1b) detected in the pituitary. Pituitary receptors displayed daily fluctuations in mRNA levels during spring, prior to the onset of gonadal maturation, but not in autumn, strongly implying a direct involvement of melatonin in seasonal processes regulated by the pituitary. To the best of our knowledge, this is the first report of cAMP induction mediated via melatonin receptors in a teleost species.
Assuntos
Receptores de Melatonina/metabolismo , Salmo salar/metabolismo , Animais , AMP Cíclico/metabolismo , Filogenia , Hipófise/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Receptores de Melatonina/genética , Salmo salar/genética , Estações do Ano , Transdução de Sinais/genética , Transdução de Sinais/fisiologiaRESUMO
Smoltification is a metamorphic event in salmon life history, which initiates downstream migration and pre-adapts juvenile salmon for seawater entry. While a number of reports concern thyroid hormones and smoltification, few and inconclusive studies have addressed the potential role of thyrotropin (TSH). TSH is composed of a α-subunit common to gonadotropins, and a ß-subunit conferring hormone specificity. We report the presence and functional divergence of duplicated TSH ß-subunit paralogs (tshßa and tshßb) in Atlantic salmon. Phylogeny and synteny analyses allowed us to infer that they originated from teleost-specific whole genome duplication. Expression profiles of both paralogs in the pituitary were measured by qPCR throughout smoltification in Atlantic salmon from the endangered Loire-Allier population raised in a conservation hatchery. This revealed a striking peak of tshßb expression in April, concomitant with downstream migration initiation, while tshßa expression remained relatively constant. In situ hybridization showed two distinct pituitary cell populations, tshßa cells in the anterior adenohypophysis, and tshßb cells near to the pituitary stalk, a location comparable to the pars tuberalis TSH cells involved in seasonal physiology and behaviour in birds and mammals. Functional divergence of tshß paralogs in Atlantic salmon supports a specific role of tshßb in smoltification.
Assuntos
Metamorfose Biológica , Salmo salar/fisiologia , Tireotropina Subunidade beta/genética , Tireotropina Subunidade beta/metabolismo , Animais , Mapeamento Cromossômico , Regulação da Expressão Gênica , Genoma , Genômica/métodos , Metamorfose Biológica/genética , Especificidade de Órgãos , Filogenia , Salmo salar/classificação , Salmo salar/crescimento & desenvolvimentoRESUMO
Gene expression of key ion transporters (the Na+/K+-ATPase NKA, the Na+, K+-2Cl- cotransporter NKCC1, and CFTR) in the gills, opercular inner epithelium, and pseudobranch of European seabass juveniles (Dicentrarchus labrax) were studied after acute transfer up to 4 days from seawater (SW) to freshwater (FW). The functional remodeling of these organs was also studied. Handling stress (SW to SW transfer) rapidly induced a transcript level decrease for the three ion transporters in the gills and operculum. NKA and CFTR relative expression level were stable, but in the pseudobranch, NKCC1 transcript levels increased (up to 2.4-fold). Transfer to FW induced even more organ-specific responses. In the gills, a 1.8-fold increase for NKA transcript levels occurs within 4 days post transfer with also a general decrease for CFTR and NKCC1. In the operculum, transcript levels are only slightly modified. In the pseudobranch, there is a transient NKCC1 increase followed by 0.6-fold decrease and 0.8-fold CFTR decrease. FW transfer also induced a density decrease for the opercular ionocytes and goblet cells. Therefore, gills and operculum display similar trends in SW-fish but have different responses in FW-transferred fish. Also, the pseudobranch presents contrasting response both in SW and in FW, most probably due to the high density of a cell type that is morphologically and functionally different compared to the typical gill-type ionocyte. This pseudobranch-type ionocyte could be involved in blood acid-base regulation masking a minor osmotic regulatory capacity of this organ compared to the gills.
Assuntos
Bass/metabolismo , Transporte de Íons/fisiologia , Aclimatação/genética , Aclimatação/fisiologia , Animais , Bass/anatomia & histologia , Bass/genética , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Proteínas de Peixes/genética , Proteínas de Peixes/metabolismo , Água Doce , Expressão Gênica , Transporte de Íons/genética , Osmorregulação/genética , Osmorregulação/fisiologia , Faringe/anatomia & histologia , Faringe/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Salinidade , Água do Mar , ATPase Trocadora de Sódio-Potássio/genética , ATPase Trocadora de Sódio-Potássio/metabolismo , Membro 2 da Família 12 de Carreador de Soluto/genética , Membro 2 da Família 12 de Carreador de Soluto/metabolismoRESUMO
In captivity, oogenesis and ovarian follicle maturation in European eel can be induced experimentally using hormonal therapy. The follicle's ability to respond effectively to the induction of maturation and ovulation, resulting in viable eggs, depends on the oocyte stage at the time of induction. We hypothesized that variation in the expression of key hormone receptors in the ovary and size of oocyte lipid droplets are associated with changes in oocyte stage. Thus, we induced ovarian follicle maturation using a priming dose of fish pituitary extract followed by the administration of a 17α, 20ß-dihydroxy-4-pregnen-3-one (DHP) injection. Females were then strip-spawned, the eggs were fertilized in vitro, incubated and larval survival was recorded at 3â¯days post hatch (dph). The expression of gonadotropin receptors (fshr, lhcgr1 and lhcgr2) and estrogen receptors (esr1, esr2a, esr2b, gpera and gperb) was quantified and the size of oocyte lipid droplets measured. Larval survival at 3 dph was used to differentiate high- and low-quality egg batches. Results showed significantly higher abundance of lhcgr1 and esr2a at priming for high-quality egg batches whereas fshr and gperb transcripts were significantly higher at DHP injection for low-quality egg batches. Therefore, high levels of lhcgr1 and esr2a may be important for attaining follicular maturational competence, while high fshr and gperb mRNA levels may indicate inadequate maturational competence. Furthermore, lipid droplet size at DHP and in ovulated eggs was significantly smaller in high-quality egg batches than in low-quality, which indicates that droplet size may be a useful marker of follicular maturational stage.
Assuntos
Anguilla/fisiologia , Oócitos/citologia , Folículo Ovariano/crescimento & desenvolvimento , Receptores de Estrogênio/genética , Receptores do FSH/genética , Receptores do LH/genética , Animais , Biomarcadores/metabolismo , Sobrevivência Celular , Feminino , Fertilização , Larva/crescimento & desenvolvimento , Gotículas Lipídicas/metabolismo , Oócitos/metabolismo , Ovulação , Reação em Cadeia da Polimerase em Tempo RealRESUMO
The Na+/K+-ATPase (NKA) is considered as the main pump involved in active ion transport. In the European sea bass, Dicentrarchus labrax, we found two genes encoding for the alpha 1 subunit isoforms (NKA α1a and NKA α1b). NKA α1a and NKA α1b isoform amino acid (aa) sequences were compared through phylogeny and regarding key functional motifs between salmonids and other acanthomorph species. Analysis of aa sequences of both isoforms revealed a high degree of conservation across teleosts. The expression pattern of both nka α1a and nka α1b was measured in the gill, kidney and posterior intestine of fish in seawater (SW) and transferred to fresh water (FW) at different exposure times. Nka α1a was more expressed than nka α1b whatever the condition and the tissue analyzed. After long-term salinity acclimation (2.5 years) either in FW or SW, transcript levels of nka α1a were higher in the kidney followed by the posterior intestine and the gill. Compared to SW conditions, expression of nka α1a in FW was significantly increased or decreased, respectively, in gill and posterior intestine. In contrast, branchial nka α1b was significantly decreased in FW-acclimated fish. Short-term FW acclimation seems to rapidly increase nka α1a transcript levels in the kidney unlike in gill tissues where different gene expression levels are detected only after long-term acclimation.
Assuntos
Bass/genética , Proteínas de Peixes/genética , Osmorregulação/genética , ATPase Trocadora de Sódio-Potássio/genética , Sequência de Aminoácidos , Animais , Sequência de Bases , Bass/fisiologia , Clonagem Molecular , DNA Complementar/genética , Brânquias/metabolismo , Mucosa Intestinal/metabolismo , Rim/metabolismo , Filogenia , Isoformas de Proteínas/genética , SalinidadeRESUMO
Thyroid-stimulating hormone (TSH) is composed of a specific ß subunit and an α subunit that is shared with the two pituitary gonadotropins. The three ß subunits derive from a common ancestral gene through two genome duplications (1R and 2R) that took place before the radiation of vertebrates. Analysis of genomic data from phylogenetically relevant species allowed us to identify an additional Tshß subunit-related gene that was generated through 2R. This gene, named Tshß2, present in cartilaginous fish, little skate and elephant shark, and in early lobe-finned fish, coelacanth and lungfish, was lost in ray-finned fish and tetrapods. The absence of a second type of TSH receptor (Tshr) gene in these species suggests that both TSHs act through the same receptor. A novel Tshß sister gene, named Tshß3, was generated through the third genomic duplication (3R) that occurred early in the teleost lineage. Tshß3 is present in most teleost groups but was lostin tedraodontiforms. The 3R also generated a second Tshr, named Tshrb. Interestingly, the new Tshrb was translocated from its original chromosomic position after the emergence of eels and was then maintained in its new position. Tshrb was lost in tetraodontiforms and in ostariophysians including zebrafish although the latter species have two TSHs, suggesting that TSHRb may be dispensable. The tissue distribution of duplicated Tshßs and Tshrs was studied in the European eel. The endocrine thyrotropic function in the eel would be essentially mediated by the classical Tshß and Tshra, which are mainly expressed in the pituitary and thyroid, respectively. Tshß3 and Tshrb showed a similar distribution pattern in the brain, pituitary, ovary and adipose tissue, suggesting a possible paracrine/autocrine mode of action in these non-thyroidal tissues. Further studies will be needed to determine the binding specificity of the two receptors and how these two TSH systems are interrelated.
Assuntos
Enguias/genética , Evolução Molecular , Peixes/genética , Receptores da Tireotropina/genética , Tireotropina Subunidade beta/genética , Tecido Adiposo/metabolismo , Sequência de Aminoácidos , Animais , Sequência de Bases , Evolução Biológica , Encéfalo/metabolismo , Feminino , França , Duplicação Gênica/genética , Ovário/metabolismo , Filogenia , Hipófise/metabolismo , Alinhamento de Sequência , Análise de Sequência de DNA , Glândula Tireoide/metabolismoRESUMO
Post-vitellogenic female rainbow trout (Oncorhynchus mykiss) were assayed in vitro for follicular maturational competence (FMC). Ovarian follicles were stimulated with a range of concentrations of partially purified gonadotropin. The efficient concentration for 50% germinal vesicle breakdown (GVBD) was calculated and used as an indicator of FMC. Before in vitro assay, ovarian tissue was sampled in order to quantify mRNA abundance of specific genes in the ovarian follicle by real-time PCR. In addition, maturation-inducing steroid (MIS, 17, 20 beta-dihydroxy-4-pregnen-3-one) and estradiol (E2) plasma levels were measured by radioimmunoassay. The mRNA expression of several genes such as luteinizing hormone receptor (LH-r), follicular stimulating hormone receptor (FSH-r), insulin-like growth factor 1 (IGF1), insulin-like growth factor 2 (IGF2), insulin-like growth factor receptor 1a (IGF-r1a), and 20 beta-hydroxysteroid dehydrogenase (20 beta-HSD) that are putatively expressed in the preovulatory ovary, was studied in females of varying FMC using real-time PCR. FMC acquisition is characterized by an increase of MIS circulating levels and a concomitant drop of E2 levels. At the ovarian level, no significant variation of LH-r, 20 beta-HSD, IGF1, and IGF-r1a mRNA abundance was observed among females of varying FMC. In contrast, FSH-r and IGF2 mRNA levels were significantly higher in females exhibiting high FMC. In addition, correlation analyses showed that IGF2 and FSH-r, mRNA levels were positively correlated with FMC. These results indicate that FMC acquisition is associated with an increased expression of these gene products that may be useful markers of FMC.