Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 2863, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38627362

RESUMO

Immune checkpoint inhibition has shown success in treating metastatic cutaneous melanoma but has limited efficacy against metastatic uveal melanoma, a rare variant arising from the immune privileged eye. To better understand this resistance, we comprehensively profile 100 human uveal melanoma metastases using clinicogenomics, transcriptomics, and tumor infiltrating lymphocyte potency assessment. We find that over half of these metastases harbor tumor infiltrating lymphocytes with potent autologous tumor specificity, despite low mutational burden and resistance to prior immunotherapies. However, we observe strikingly low intratumoral T cell receptor clonality within the tumor microenvironment even after prior immunotherapies. To harness these quiescent tumor infiltrating lymphocytes, we develop a transcriptomic biomarker to enable in vivo identification and ex vivo liberation to counter their growth suppression. Finally, we demonstrate that adoptive transfer of these transcriptomically selected tumor infiltrating lymphocytes can promote tumor immunity in patients with metastatic uveal melanoma when other immunotherapies are incapable.


Assuntos
Melanoma , Neoplasias Cutâneas , Neoplasias Uveais , Humanos , Melanoma/genética , Melanoma/terapia , Neoplasias Uveais/genética , Neoplasias Uveais/terapia , Linfócitos do Interstício Tumoral , Imunoterapia , Microambiente Tumoral/genética
2.
Cell Mol Life Sci ; 79(11): 567, 2022 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-36283989

RESUMO

Mycobacterium tuberculosis (Mtb) is a smart and successful pathogen since it can persist in the intimidating environment of the host by taming and tuning the immune system. Mtb releases MPT64 (Rv1980c) protein in high amounts in patients with active tuberculosis (TB). Consequently, we were curious to decipher the role of MPT64 on the differentiating dendritic cells (DCs) and its relation to evading the immune system. We observed that pre-exposure of differentiating DCs to MPT64 (DCMPT64) transformed them into a phenotype of myeloid-derived suppressor cells (MDSCs). DCMPT64 expressed a high level of immunosuppressive molecules PD-L1, TIM-3, nitric oxide (NO), arginase 1, IDO-1, IL-10 and TGF-ß, but inhibited the production of pro-inflammatory cytokines TNF-α, IL-6 and IL-12. DCMPT64 chemotaxis function was diminished due to the reduced expression of CCR7. DCMPT64 promoted the generation of regulatory T cells (Tregs) but inhibited the differentiation of Th1 cells and Th17 cells. Further, high lipid and methylglyoxal content, and reduced glucose consumption by DCMPT64, rendered them metabolically quiescent and consequently, reduced DCMPT64 ability to phagocytose Mtb and provided a safer shelter for the intracellular survival of the mycobacterium. The mechanism identified in impairing the function of DCMPT64 was through the increased production and accumulation of methylglyoxal. Hence, for the first time, we demonstrate the novel role of MPT64 in promoting the generation of MDSCs to favor Mtb survival and escape its destruction by the immune system.


Assuntos
Mycobacterium tuberculosis , Células Supressoras Mieloides , Células Supressoras Mieloides/metabolismo , Interleucina-10/genética , Interleucina-10/metabolismo , Arginase , Receptor Celular 2 do Vírus da Hepatite A/metabolismo , Antígeno B7-H1/metabolismo , Óxido Nítrico/metabolismo , Aldeído Pirúvico/metabolismo , Interleucina-6/metabolismo , Receptores CCR7/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Células Th1 , Citocinas/metabolismo , Interleucina-12/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Glucose/metabolismo , Lipídeos , Células Dendríticas/metabolismo
3.
J Transl Med ; 15(1): 201, 2017 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-28985739

RESUMO

BACKGROUND: The current BCG vaccine induces only short-term protection against Mycobacterium tuberculosis (Mtb), suggesting its failure to generate long-lasting memory T cells. Previously, we have demonstrated that a self-adjuvanting peptide of Mtb (L91), successfully generated enduring memory Th1 cells. Consequently, we investigated if L91 was able to recuperate BCG potency in perpetuating the generation of memory T cells and protection against Mtb infected mice. METHODS: In the present study, we evaluated the potency of a self adjuvanting Mtb peptide vaccine L91 in invigorating BCG immune response against Mtb in mice. Female BALB/c mice were immunized with BCG. Later, they were boosted twice with L91 or an antigenically irrelevant lipidated influenza virus hemagglutinin peptide (LH). Further, PBMCs obtained from BCG vaccinated healthy subjects were cultured in vitro with L91. T cell responses were determined by surface markers and intracellular cytokine staining. Secretion of cytokines was estimated in the culture supernatants (SNs) by ELISA. RESULTS: Compared to the BCG-vaccinated controls, L91 booster significantly enhanced the percentage of memory Th1 cells and Th17 cells and reduced the mycobacterial burden in BCG primed and L91-boosted (BCG-L91) group, even after 229 days of BCG vaccination. Further, substantial augmentation in the central (CD44hiCD62LhiCD127hi) and effector memory (CD44hiCD62LloCD127lo) CD4 T cells was detected. Furthermore, greater frequency of polyfunctional Th1 cells (IFN-γ+TNF-α+) and Th17 cells (IFN-γ+IL-17A+) was observed. Importantly, BCG-L91 successfully prevented CD4 T cells from exhaustion by decreasing the expression of PD-1 and Tim-3. Additionally, augmentation in the frequency of Th1 cells, Th17 cells and memory CD4 T cells was observed in the PBMCs of the BCG-vaccinated healthy individuals following in vitro stimulation with L91. CONCLUSIONS: Our study demonstrated that L91 robustly reinvigorate BCG potency to invoke enduring protection against Mtb. This novel vaccination stratagem involving BCG-priming followed by L91-boosting can be a future prophylactic measure to control TB.


Assuntos
Vacina BCG/imunologia , Imunidade , Memória Imunológica , Lipídeos/química , Mycobacterium tuberculosis/imunologia , Peptídeos/farmacologia , Substâncias Protetoras/farmacologia , Linfócitos T Reguladores/imunologia , Animais , Células Apresentadoras de Antígenos/metabolismo , Proliferação de Células/efeitos dos fármacos , Feminino , Humanos , Imunidade/efeitos dos fármacos , Memória Imunológica/efeitos dos fármacos , Ativação Linfocitária/efeitos dos fármacos , Camundongos Endogâmicos BALB C , Mycobacterium tuberculosis/efeitos dos fármacos , NF-kappa B/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Fenótipo , Receptores de Quimiocinas/metabolismo , Linfócitos T Reguladores/efeitos dos fármacos , Células Th1/efeitos dos fármacos , Células Th1/imunologia , Células Th17/efeitos dos fármacos , Células Th17/imunologia , Tuberculose/imunologia , Tuberculose/microbiologia
4.
Sci Rep ; 6: 23917, 2016 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-27052185

RESUMO

Regardless of the fact that potent drug-regimen is currently available, tuberculosis continues to kill 1.5 million people annually. Tuberculosis patients are not only inflicted by the trauma of disease but they also suffer from the harmful side-effects, immune suppression and drug resistance instigated by prolonged therapy. It is an exigency to introduce radical changes in the existing drug-regime and discover safer and better therapeutic measures. Hence, we designed a novel therapeutic strategy by reinforcing the efficacy of drugs to kill Mtb by concurrently boosting host immunity by L91. L91 is chimera of promiscuous epitope of Acr1 antigen of Mtb and TLR-2 agonist Pam2Cys. The adjunct therapy using drugs and L91 (D-L91) significantly declined the bacterial load in Mtb infected animals. The mechanism involved was through enhancement of IFN-γ(+)TNF-α(+) polyfunctional Th1 cells and IL-17A(+)IFN-γ(+) Th17 cells, enduring memory CD4 T cells and downregulation of PD-1. The down-regulation of PD-1 prevents CD4 T cells from undergoing exhaustion and improves their function against Mtb. Importantly, the immune response observed in animals could be replicated using T cells of tuberculosis patients on drug therapy. In future, D-L91 therapy can invigorate drugs potency to treat tuberculosis patients and reduce the dose and duration of drug-regime.


Assuntos
Mycobacterium tuberculosis/efeitos dos fármacos , Peptídeos/imunologia , Células Th1/imunologia , Células Th17/imunologia , Tuberculose/tratamento farmacológico , Animais , Carga Bacteriana/efeitos dos fármacos , Proteínas de Bactérias/química , Proteínas de Bactérias/imunologia , Modelos Animais de Doenças , Sinergismo Farmacológico , Epitopos/imunologia , Humanos , Interferon gama/metabolismo , Interleucina-17/metabolismo , Lipopeptídeos/química , Camundongos , Mycobacterium tuberculosis/imunologia , Peptídeos/química , Peptídeos/farmacologia , Tuberculose/imunologia , Fator de Necrose Tumoral alfa/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA