Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
1.
medRxiv ; 2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-39108525

RESUMO

Background: Women with type 2 diabetes (T2D) have a 50% excess risk of coronary heart disease (CHD) than men with T2D. We compared circulating metabolites and their associations with CHD in men and women across glycemic status. Methods: We used metabolomic data (lipoproteins, fatty acids, amino acids, glycolysis, ketones, inflammation, and fluid balance) for 87,326 CHD-free UK Biobank participants. We used linear regressions to examine the association of sex and metabolites (log) in newly diagnosed T2D (diagnosis<2 yrs from baseline), prediabetes (A1c 5.7-6.5%), and euglycemia, accounting for age, race, Deprivation Index, income, smoking, alcohol drinking, obesity, physical activity, medications for hypertension, hyperlipidemia, and diabetes. We used Cox models to evaluate the association of metabolites and CHD risk by sex, adjusting the same covariates and menopausal status (women). All analyses were FDR-adjusted. Findings: We included 1250 individuals with new T2D, 12,706 with prediabetes, and 83,315 with euglycemia. In adjusted linear regressions, women showed a progressive increase in atherogenic lipid and lipoprotein markers and inflammatory marker, glycoprotein acetyls, compared to men as their glycemic status advanced. However, women had lower levels of albumin during this transition. Menopausal status did not alter these sex differences. In a 10-year follow-up, an SD higher total TG, TG in VLDL, LDL, and HDL, saturated fatty acids (SFA) were positively associated with a higher risk of CHD in women with T2D but not in men (p-interactions 0.03-0.15). Interpretation: With advancing glycemic status, women exhibited higher levels of atherogenic lipids and lipoproteins, as well as inflammatory markers, but lower circulating albumin. Women with T2D appear to be at a higher risk of CHD associated with TG, VLDL-TG, LDL-TG, and HDL-TG, and SFA than men with T2D.

2.
Biochim Biophys Acta Mol Basis Dis ; 1870(7): 167322, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38942338

RESUMO

Obesity is a risk factor for developing severe COVID-19. However, the mechanism underlying obesity-accelerated COVID-19 remains unclear. Here, we report results from a study in which 2-3-month-old K18-hACE2 (K18) mice were fed a western high-fat diet (WD) or normal chow (NC) over 3 months before intranasal infection with a sublethal dose of SARS-CoV2 WA1 (a strain ancestral to the Wuhan variant). After infection, the WD-fed K18 mice lost significantly more body weight and had more severe lung inflammation than normal chow (NC)-fed mice. Bulk RNA-seq analysis of lungs and adipose tissue revealed a diverse landscape of various immune cells, inflammatory markers, and pathways upregulated in the infected WD-fed K18 mice when compared with the infected NC-fed control mice. The transcript levels of IL-6, an important marker of COVID-19 disease severity, were upregulated in the lung at 6-9 days post-infection in the WD-fed mice when compared to NC-fed mice. Transcriptome analysis of the lung and adipose tissue obtained from deceased COVID-19 patients found that the obese patients had an increase in the expression of genes and the activation of pathways associated with inflammation as compared to normal-weight patients (n = 2). The K18 mouse model and human COVID-19 patient data support a link between inflammation and an obesity-accelerated COVID-19 disease phenotype. These results also indicate that obesity-accelerated severe COVID-19 caused by SARS-CoV-2 WA1 infection in the K18 mouse model would be a suitable model for dissecting the cellular and molecular mechanisms underlying pathogenesis.


Assuntos
COVID-19 , Pulmão , Obesidade , SARS-CoV-2 , Regulação para Cima , COVID-19/genética , COVID-19/virologia , COVID-19/metabolismo , COVID-19/patologia , Animais , Obesidade/genética , Obesidade/metabolismo , Obesidade/complicações , Camundongos , Humanos , Pulmão/metabolismo , Pulmão/patologia , Pulmão/virologia , Dieta Hiperlipídica/efeitos adversos , Inflamação/genética , Inflamação/patologia , Inflamação/metabolismo , Modelos Animais de Doenças , Interleucina-6/genética , Interleucina-6/metabolismo , Masculino , Tecido Adiposo/metabolismo , Tecido Adiposo/patologia , Índice de Gravidade de Doença , Enzima de Conversão de Angiotensina 2/genética , Enzima de Conversão de Angiotensina 2/metabolismo
3.
Maturitas ; 170: 39-41, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36773498

RESUMO

Whether menopausal hormone therapy (MHT) lessens the severity of COVID-19 among women is unclear. Leveraging a U.S. national COVID-19 cohort and a cross-sectional analysis, we found MHT use was marginally associated with a lower risk of mortality (odds ratio [OR] 0.73, 95 % CI 0.53-1.01) and significantly associated with a lower risk of prolonged hospital stay (0.7, 0.49-0.99) among inpatient women. When stratifying by MHT type, estrogen-only and estrogen-plus-progestin therapies had a more prominent protective effect than progestin-only therapy, although this difference did not achieve statistical significance. Women with COVID-19 can continue to use MHT. Clinical trials are needed to evaluate MHT's therapeutic effect on COVID-19, especially in terms of severity.


Assuntos
COVID-19 , Menopausa , Feminino , Humanos , Terapia de Reposição de Estrogênios , Progestinas , Estudos Transversais , Terapia de Reposição Hormonal , Estrogênios
4.
BMC Infect Dis ; 22(1): 784, 2022 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-36224551

RESUMO

OBJECTIVE: The impact of comorbidities and biomarkers on COVID-19 severity vary by sex but have not yet been verified in population-based studies. We examined the association of comorbidities, inflammatory biomarkers, and severe outcomes in men and women hospitalized for COVID-19. DESIGN: This is a retrospective cohort analysis based on the National COVID Cohort Collaborative (N3C). We included 574,391 adult patients admitted for COVID-19 at hospitals or emergency rooms between 01/01/2020 and 12/31/2021. METHODS: We defined comorbidities at or before the first admission for COVID-19 by Charlson Comorbidity Index (CCI) and CCI components. We used the averaged lab values taken within 15 days before or after the admission date to measure biomarkers including c-reactive protein (CRP), ferritin, procalcitonin, N-terminal pro b-type natriuretic peptide (NT proBNP), d-dimer, absolute lymphocyte counts, absolute neutrophil counts, and platelets. Our primary outcome was all-cause mortality; secondary outcomes were invasive mechanical ventilation (IMV) and hospital length of stay (LOS). We used logistic regression adjusted for age, race, ethnicity, visit type, and medications to assess the association of comorbidities, biomarkers, and mortality disaggregating by sex. RESULTS: Moderate to severe liver disease, renal disease, metastatic solid tumor, and myocardial infarction were the top four fatal comorbidities among patients who were hospitalized for COVID-19 (adjusted odds ratio [aOR] > 2). These four comorbid conditions remained the most lethal in both sexes, with a higher magnitude of risk in women than in men (p-interaction < 0.05). Abnormal elevations of CRP, ferritin, procalcitonin, NT proBNP, neutrophil, and platelet counts, and lymphocytopenia were significantly associated with the risk of death, with procalcitonin and NT proBNP as the strongest predictors (aOR > 2). The association between the abnormal biomarkers and death was stronger in women than in men (p-interaction < 0.05). CONCLUSION: There are sex differences in inpatient mortality associated with comorbidities and biomarkers. The significant impact of these clinical determinants in women with COVID-19 may be underappreciated as previous studies stressed the increased death rate in male patients that is related to comorbidities or inflammation. Our study highlights the importance and the need for sex-disaggregated research to understand the risk factors of poor outcomes and health disparities in COVID-19.


Assuntos
COVID-19 , Adulto , Biomarcadores , Proteína C-Reativa/análise , COVID-19/epidemiologia , Feminino , Ferritinas , Humanos , Masculino , Peptídeo Natriurético Encefálico , Pró-Calcitonina , Estudos Retrospectivos , Caracteres Sexuais
5.
Cell Rep Med ; 3(4): 100598, 2022 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-35492248

RESUMO

We study the efficacy of a glucagon-like peptide-1 (GLP-1) and estrogen dual agonist (GLP1-E2) in pancreatic islet protection. GLP1-E2 provides superior protection from insulin-deficient diabetes induced by multiple low-dose streptozotocin (MLD-STZ-diabetes) and by the Akita mutation in mice than a GLP-1 monoagonist. GLP1-E2 does not protect from MLD-STZ-diabetes in estrogen receptor-α (ERα)-deficient mice and fails to prevent diabetes in Akita mice following GLP-1 receptor (GLP-1R) antagonism, demonstrating the requirement of GLP-1R and ERα for GLP1-E2 antidiabetic actions. In the MIN6 ß cell model, GLP1-E2 activates estrogen action following clathrin-dependent, GLP-1R-mediated internalization and lysosomal acidification. In cultured human islet, proteomic bioinformatic analysis reveals that GLP1-E2 amplifies the antiapoptotic pathways activated by monoagonists. However, in cultured mouse islets, GLP1-E2 provides antiapoptotic protection similar to monoagonists. Thus, GLP1-E2 promotes GLP-1 and E2 antiapoptotic signals in cultured islets, but in vivo, additional GLP1-E2 actions in non-islet cells expressing GLP-1R are instrumental to prevent diabetes.


Assuntos
Diabetes Mellitus , Ilhotas Pancreáticas , Animais , Diabetes Mellitus/metabolismo , Receptor alfa de Estrogênio/metabolismo , Estrogênios/metabolismo , Peptídeo 1 Semelhante ao Glucagon/farmacologia , Insulina/metabolismo , Insulina Regular Humana/metabolismo , Ilhotas Pancreáticas/metabolismo , Camundongos , Proteômica , Estreptozocina/toxicidade
6.
Endocr Rev ; 43(4): 720-742, 2022 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-34791092

RESUMO

Rapid effects of steroid hormones were discovered in the early 1950s, but the subject was dominated in the 1970s by discoveries of estradiol and progesterone stimulating protein synthesis. This led to the paradigm that steroid hormones regulate growth, differentiation, and metabolism via binding a receptor in the nucleus. It took 30 years to appreciate not only that some cellular functions arise solely from membrane-localized steroid receptor (SR) actions, but that rapid sex steroid signaling from membrane-localized SRs is a prerequisite for the phosphorylation, nuclear import, and potentiation of the transcriptional activity of nuclear SR counterparts. Here, we provide a review and update on the current state of knowledge of membrane-initiated estrogen (ER), androgen (AR) and progesterone (PR) receptor signaling, the mechanisms of membrane-associated SR potentiation of their nuclear SR homologues, and the importance of this membrane-nuclear SR collaboration in physiology and disease. We also highlight potential clinical implications of pathway-selective modulation of membrane-associated SR.


Assuntos
Receptores de Progesterona , Receptores de Esteroides , Androgênios , Estradiol , Estrogênios , Humanos , Progesterona/fisiologia , Receptores Androgênicos , Receptores de Progesterona/metabolismo , Receptores de Esteroides/metabolismo , Esteroides
7.
BMJ Open ; 11(11): e053684, 2021 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-34848523

RESUMO

INTRODUCTION: As of November 2021, COVID-19 has killed more than 5 million people globally, including over 750 000 in the USA. Apart from corticosteroids, most available therapeutic options are at best marginally efficient in reducing disease severity and are extremely expensive. The systematic investigation of clinically approved drugs is a priority to determine what does mitigate disease severity. Oestradiol (E2) and progesterone (P4) produce a state of anti-inflammatory immune responses and immune tolerance, and enhanced antibody production. The goal of this trial is to evaluate the efficacy of a short E2 and P4 therapy, in addition to standard of care (SOC), in mitigating disease severity in COVID-19 hospitalised patients. METHODS AND ANALYSIS: Phase 2, randomised, double blind, placebo-controlled, single-centre trial. Patients hospitalised for confirmed COVID-19, with scores 3-5 on the 9-point WHO ordinal scale are randomised between two arms: (1) Oestradiol cypionate intramuscular (IM) and micronised progesterone oral (PO), in addition to SOC, and (2) placebo, in addition to SOC. The primary outcome is the proportion of patients improving to scores 1 or 2 on the WHO scale through day 28. Secondary outcomes include length of hospital stay, duration of mechanical ventilation, cause of death, readmission rates, change in inflammatory biomarkers between admission and occurrence of primary endpoint, and adverse events. Study sample size will be up to 120 participants. The trial is currently recruiting subjects. ETHICS AND DISSEMINATION: The sponsor of this study is the Center of Excellence in Sex-Based Biology & Medicine at Tulane University, New Orleans, Louisiana, USA. Ethical approval was obtained from the Tulane institutional review board on 14 May 2021. The study was reviewed by the US Food and Drug Administration and granted Investigational New Drug #152 499. Results of the study will be submitted for publication in a peer-reviewed journal. TRIAL REGISTRATION NUMBER: NCT04865029; Pre-results.


Assuntos
COVID-19 , Progesterona , Adulto , Estradiol , Humanos , Respiração Artificial , SARS-CoV-2 , Resultado do Tratamento
9.
FASEB J ; 35(10): e21921, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34547140

RESUMO

Androgen excess is one of the most common endocrine disorders of reproductive-aged women, affecting up to 20% of this population. Women with elevated androgens often exhibit hyperinsulinemia and insulin resistance. The mechanisms of how elevated androgens affect metabolic function are not clear. Hyperandrogenemia in a dihydrotestosterone (DHT)-treated female mouse model induces whole body insulin resistance possibly through activation of the hepatic androgen receptor (AR). We investigated the role of hepatocyte AR in hyperandrogenemia-induced metabolic dysfunction by using several approaches to delete hepatic AR via animal-, cell-, and clinical-based methodologies. We conditionally disrupted hepatocyte AR in female mice developmentally (LivARKO) or acutely by tail vein injection of an adeno-associated virus with a liver-specific promoter for Cre expression in ARfl/fl mice (adLivARKO). We observed normal metabolic function in littermate female Control (ARfl/fl ) and LivARKO (ARfl/fl ; Cre+/- ) mice. Following chronic DHT treatment, female Control mice treated with DHT (Con-DHT) developed impaired glucose tolerance, pyruvate tolerance, and insulin tolerance, not observed in LivARKO mice treated with DHT (LivARKO-DHT). Furthermore, during an euglycemic hyperinsulinemic clamp, the glucose infusion rate was improved in LivARKO-DHT mice compared to Con-DHT mice. Liver from LivARKO, and primary hepatocytes derived from LivARKO, and adLivARKO mice were protected from DHT-induced insulin resistance and increased gluconeogenesis. These data support a paradigm in which elevated androgens in females disrupt metabolic function via hepatic AR and insulin sensitivity was restored by deletion of hepatic AR.


Assuntos
Androgênios/farmacologia , Resistência à Insulina , Fígado/metabolismo , Receptores Androgênicos/deficiência , Androgênios/metabolismo , Animais , Di-Hidrotestosterona/metabolismo , Di-Hidrotestosterona/farmacologia , Feminino , Gluconeogênese/efeitos dos fármacos , Glucose/metabolismo , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Homeostase/efeitos dos fármacos , Insulina/metabolismo , Fígado/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Ácido Pirúvico/metabolismo
10.
Diabetes Care ; 44(11): 2564-2572, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34475032

RESUMO

OBJECTIVE: Early menopause may be associated with higher cardiovascular disease (CVD) risk. Type 2 diabetes mellitus (T2DM), coupled with early menopause, may result in even greater CVD risk in women. We examined CVD risk in women with early compared with normal-age menopause, with and without T2DM overall, and by race/ethnicity. RESEARCH DESIGN AND METHODS: We pooled data from the Atherosclerosis Risk in Communities study, the Multi-Ethnic Study of Atherosclerosis, and the Jackson Heart Study. We included women with data on menopausal status, menopausal age, and T2DM, excluding pre- or perimenopausal women and those with prevalent CVD. Outcomes included incident coronary heart disease (CHD), stroke, heart failure (HF), and atherosclerotic cardiovascular disease (ASCVD) (CHD or stroke). We estimated the risk associated with early (<45 years) compared with normal-age menopause using Cox proportional hazards models. Covariates included age, race/ethnicity, education, BMI, blood pressure, cholesterol, smoking, alcohol consumption, antihypertensive medication, lipid-lowering medication, hormone therapy use, and pregnancy history. RESULTS: We included 9,374 postmenopausal women for a median follow-up of 15 years. We observed 1,068 CHD, 659 stroke, 1,412 HF, and 1,567 ASCVD events. T2DM significantly modified the effect of early menopause on CVD risk. Adjusted hazard ratios for early menopause and the outcomes were greater in women with T2DM versus those without (CHD 1.15 [95% CI 1.00, 1.33] vs. 1.09 [1.03, 1.15]; stroke 1.21 [1.04, 1.40] vs. 1.10 [1.04, 1.16]; ASCVD 1.29 [1.09, 1.51] vs. 1.10 [1.04, 1.17]; HF 1.18 [1.00, 1.39] vs. 1.09 [1.03, 1.16]). The modifying effect of T2DM on the association between early menopause and ASCVD was only statistically significant in Black compared with White women. CONCLUSIONS: Early menopause was associated with an increased risk for CVD in postmenopausal women. T2DM may further augment the risk, particularly in Black women.


Assuntos
Aterosclerose , Doenças Cardiovasculares , Doença das Coronárias , Diabetes Mellitus Tipo 2 , Aterosclerose/complicações , Doenças Cardiovasculares/epidemiologia , Doenças Cardiovasculares/etiologia , Pré-Escolar , Doença das Coronárias/complicações , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/epidemiologia , Feminino , Humanos , Menopausa , Pós-Menopausa , Fatores de Risco
11.
Theranostics ; 11(16): 8076-8091, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34335981

RESUMO

Rationale: Pulmonary vascular endotheliitis, perivascular inflammation, and immune activation are observed in COVID-19 patients. While the initial SARS-CoV-2 infection mainly infects lung epithelial cells, whether it also infects endothelial cells (ECs) and to what extent SARS-CoV-2-mediated pulmonary vascular endotheliitis is associated with immune activation remain to be determined. Methods: To address these questions, we studied SARS-CoV-2-infected K18-hACE2 (K18) mice, a severe COVID-19 mouse model, as well as lung samples from SARS-CoV-2-infected nonhuman primates (NHP) and patient deceased from COVID-19. We used immunostaining, RNAscope, and electron microscopy to analyze the organs collected from animals and patient. We conducted bulk and single cell (sc) RNA-seq analyses, and cytokine profiling of lungs or serum of the severe COVID-19 mice. Results: We show that SARS-CoV-2-infected K18 mice develop severe COVID-19, including progressive body weight loss and fatality at 7 days, severe lung interstitial inflammation, edema, hemorrhage, perivascular inflammation, systemic lymphocytopenia, and eosinopenia. Body weight loss in K18 mice correlated with the severity of pneumonia, but not with brain infection. We also observed endothelial activation and dysfunction in pulmonary vessels evidenced by the up-regulation of VCAM1 and ICAM1 and the downregulation of VE-cadherin. We detected SARS-CoV-2 in capillary ECs, activation and adhesion of platelets and immune cells to the vascular wall of the alveolar septa, and increased complement deposition in the lungs, in both COVID-19-murine and NHP models. We also revealed that pathways of coagulation, complement, K-ras signaling, and genes of ICAM1 and VCAM1 related to EC dysfunction and injury were upregulated, and were associated with massive immune activation in the lung and circulation. Conclusion: Together, our results indicate that SARS-CoV-2 causes endotheliitis via both infection and infection-mediated immune activation, which may contribute to the pathogenesis of severe COVID-19 disease.


Assuntos
COVID-19/imunologia , COVID-19/patologia , Animais , COVID-19/metabolismo , Modelos Animais de Doenças , Células Endoteliais/imunologia , Células Endoteliais/virologia , Células Epiteliais/imunologia , Células Epiteliais/virologia , Pulmão/patologia , Camundongos , Camundongos Endogâmicos , Camundongos Transgênicos , SARS-CoV-2/isolamento & purificação
12.
Endocrinology ; 162(8)2021 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-34089595

RESUMO

Coronavirus disease 2019 (COVID-19) is characterized by a gender disparity in severity, with men exhibiting higher hospitalization and mortality rates than women. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the virus responsible for COVID-19, infects cells following recognition and attachment of the viral spike glycoprotein to the angiotensin-converting enzyme 2 transmembrane protein, followed by spike protein cleavage and activation by cell surface transmembrane protease serine 2 (TMPRSS2). In prostate cancer cells, androgen acting on the androgen receptor increases TMPRSS2 expression, which has led to the hypothesis that androgen-dependent expression of TMPRSS2 in the lung may increase men's susceptibility to severe COVID-19 and that, accordingly, suppressing androgen production or action may mitigate COVID-19 severity by reducing SARS-CoV-2 amplification. Several ongoing clinical trials are testing the ability of androgen deprivation therapies or anti-androgens to mitigate COVID-19. This perspective discusses clinical and molecular advances on the rapidly evolving field of androgen receptor (AR) action on cell surface transmembrane protease serine 2 (TMPRSS2) expression and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, and the potential effect of anti-androgens on coronavirus disease 2019 (COVID-19) severity in male patients. It discusses limitations of current studies and offers insight for future directions.


Assuntos
Antagonistas de Androgênios/uso terapêutico , Tratamento Farmacológico da COVID-19 , SARS-CoV-2 , Animais , Expressão Gênica/efeitos dos fármacos , Humanos , Pulmão/metabolismo , Pulmão/virologia , Masculino , Camundongos , Neoplasias da Próstata/tratamento farmacológico , Receptores Androgênicos/efeitos dos fármacos , Receptores Androgênicos/fisiologia , SARS-CoV-2/fisiologia , Serina Endopeptidases/efeitos dos fármacos , Serina Endopeptidases/genética , Serina Endopeptidases/fisiologia , Fatores Sexuais
13.
Eur J Endocrinol ; 183(4): 439-452, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32698159

RESUMO

OBJECTIVE: Combining conjugated estrogens (CE) with the selective estrogen receptor modulator bazedoxifene (BZA) is a novel, orally administered menopausal therapy. We investigated the effect of CE/BZA on insulin sensitivity, energy metabolism, and serum metabolome in postmenopausal women with obesity. DESIGN: Randomized, double-blind, crossover pilot trial with washout was conducted at Pennington Biomedical Research Center. Eight postmenopausal women (age 50-60 years, BMI 30-40 kg/m2) were randomized to 8 weeks CE/BZA or placebo. Primary outcome was insulin sensitivity (hyperinsulinemic-euglycemic clamp). Secondary outcomes included body composition (DXA); resting metabolic rate (RMR); substrate oxidation (indirect calorimetry); ectopic lipids (1H-MRS); fat cell size, adipose and skeletal muscle gene expression (biopsies); serum inflammatory markers; and serum metabolome (LC/MS). RESULTS: CE/BZA treatment produced no detectable effect on insulin sensitivity, body composition, ectopic fat, fat cell size, or substrate oxidation, but resulted in a non-significant increase in RMR (basal: P = 0.06; high-dose clamp: P = 0.08) compared to placebo. CE/BZA increased serum high-density lipoprotein (HDL)-cholesterol. CE/BZA also increased serum diacylglycerol (DAG) and triacylglycerol (TAG) species containing long-chain saturated, mono- and polyunsaturated fatty acids (FAs) and decreased long-chain acylcarnitines, possibly reflecting increased hepatic de novo FA synthesis and esterification into TAGs for export into very low-density lipoproteins, as well as decreased FA oxidation, respectively (P < 0.05). CE/BZA increased serum phosphatidylcholines, phosphatidylethanolamines, ceramides, and sphingomyelins, possibly reflecting the increase in serum lipoproteins (P < 0.05). CONCLUSIONS: A short treatment of obese postmenopausal women with CE/BZA does not alter insulin action or ectopic fat but increases serum markers of hepatic de novo lipogenesis and TAG production.


Assuntos
Metabolismo dos Carboidratos/efeitos dos fármacos , Metabolismo Energético/efeitos dos fármacos , Estrogênios Conjugados (USP)/farmacologia , Glucose/metabolismo , Indóis/farmacologia , Metabolismo dos Lipídeos/efeitos dos fármacos , Obesidade/metabolismo , Glicemia/efeitos dos fármacos , Glicemia/metabolismo , Estudos Cross-Over , Método Duplo-Cego , Estrogênios Conjugados (USP)/uso terapêutico , Feminino , Humanos , Indóis/uso terapêutico , Pessoa de Meia-Idade , Obesidade/tratamento farmacológico , Projetos Piloto , Pós-Menopausa/efeitos dos fármacos , Pós-Menopausa/metabolismo
14.
Endocrinology ; 161(9)2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32652001

RESUMO

The current COVID-19 pandemic is the most disruptive event in the past 50 years, with a global impact on health care and world economies. It is caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), a coronavirus that uses angiotensin-converting enzyme 2 (ACE2) as an entry point to the cells. ACE2 is a transmembrane carboxypeptidase and member of the renin-angiotensin system. This mini-review summarizes the main findings regarding ACE2 expression and function in endocrine tissues. We discuss rapidly evolving knowledge on the potential role of ACE2 and SARS coronaviruses in endocrinology and the development of diabetes mellitus, hypogonadism, and pituitary and thyroid diseases.


Assuntos
Angiotensina II/metabolismo , Betacoronavirus/fisiologia , Complicações do Diabetes/virologia , Doenças do Sistema Endócrino/virologia , Peptidil Dipeptidase A/fisiologia , Enzima de Conversão de Angiotensina 2 , Animais , Betacoronavirus/patogenicidade , Encéfalo , COVID-19 , Infecções por Coronavirus/complicações , Doenças do Sistema Endócrino/complicações , Expressão Gênica , Humanos , Hipogonadismo/complicações , Hipogonadismo/virologia , Camundongos , Pandemias , Peptidil Dipeptidase A/genética , Doenças da Hipófise/complicações , Doenças da Hipófise/virologia , Pneumonia Viral/complicações , Ratos , Sistema Renina-Angiotensina , SARS-CoV-2 , Serina Endopeptidases/genética , Doenças da Glândula Tireoide/complicações , Doenças da Glândula Tireoide/virologia
15.
Endocrinology ; 161(9)2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32730568

RESUMO

Severe outcomes and death from the novel coronavirus disease 2019 (COVID-19) appear to be characterized by an exaggerated immune response with hypercytokinemia leading to inflammatory infiltration of the lungs and acute respiratory distress syndrome. Risk of severe COVID-19 outcomes is consistently lower in women than men worldwide, suggesting that female biological sex is instrumental in protection. This mini-review discusses the immunomodulatory and anti-inflammatory actions of high physiological concentrations of the steroids 17ß-estradiol (E2) and progesterone (P4). We review how E2 and P4 favor a state of decreased innate immune inflammatory response while enhancing immune tolerance and antibody production. We discuss how the combination of E2 and P4 may improve the immune dysregulation that leads to the COVID-19 cytokine storm. It is intended to stimulate novel consideration of the biological forces that are protective in women compared to men, and to therapeutically harness these factors to mitigate COVID-19 morbidity and mortality.


Assuntos
Infecções por Coronavirus/imunologia , Estradiol/imunologia , Imunomodulação/imunologia , Pneumonia Viral/imunologia , Progesterona/imunologia , Formação de Anticorpos/imunologia , Betacoronavirus , COVID-19 , Anticoncepcionais Orais Hormonais/uso terapêutico , Infecções por Coronavirus/tratamento farmacológico , Infecções por Coronavirus/mortalidade , Infecções por Coronavirus/fisiopatologia , Síndrome da Liberação de Citocina/imunologia , Reposicionamento de Medicamentos , Estradiol/uso terapêutico , Terapia de Reposição de Estrogênios , Estrogênios/uso terapêutico , Feminino , Humanos , Tolerância Imunológica/imunologia , Imunidade Inata/imunologia , Masculino , Pandemias , Pneumonia Viral/tratamento farmacológico , Pneumonia Viral/mortalidade , Pneumonia Viral/fisiopatologia , Gravidez , Complicações Infecciosas na Gravidez/imunologia , Progesterona/uso terapêutico , Progestinas/uso terapêutico , SARS-CoV-2 , Moduladores Seletivos de Receptor Estrogênico/uso terapêutico , Índice de Gravidade de Doença , Fatores Sexuais , Tratamento Farmacológico da COVID-19
16.
Sci Transl Med ; 12(528)2020 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-31996464

RESUMO

Human obesity has become a global health epidemic, with few safe and effective pharmacological therapies currently available. The systemic loss of ovarian estradiol (E2) in women after menopause greatly increases the risk of obesity and metabolic dysfunction, revealing the critical role of E2 in this setting. The salutary effects of E2 are traditionally attributed to the classical estrogen receptors ERα and ERß, with the contribution of the G protein-coupled estrogen receptor (GPER) still largely unknown. Here, we used ovariectomy- and diet-induced obesity (DIO) mouse models to evaluate the preclinical activity of GPER-selective small-molecule agonist G-1 (also called Tespria) against obesity and metabolic dysfunction. G-1 treatment of ovariectomized female mice (a model of postmenopausal obesity) reduced body weight and improved glucose homeostasis without changes in food intake, fuel source usage, or locomotor activity. G-1-treated female mice also exhibited increased energy expenditure, lower body fat content, and reduced fasting cholesterol, glucose, insulin, and inflammatory markers but did not display feminizing effects on the uterus (imbibition) or beneficial effects on bone health. G-1 treatment of DIO male mice did not elicit weight loss but prevented further weight gain and improved glucose tolerance, indicating that G-1 improved glucose homeostasis independently of its antiobesity effects. However, in ovariectomized DIO female mice, G-1 continued to elicit weight loss, reflecting possible sex differences in the mechanisms of G-1 action. In conclusion, this work demonstrates that GPER-selective agonism is a viable therapeutic approach against obesity, diabetes, and associated metabolic abnormalities in multiple preclinical male and female models.


Assuntos
Diabetes Mellitus/tratamento farmacológico , Obesidade/tratamento farmacológico , Receptores Acoplados a Proteínas G/agonistas , Tecido Adiposo/patologia , Adiposidade/efeitos dos fármacos , Animais , Respiração Celular , Modelos Animais de Doenças , Metabolismo Energético , Estrogênios/deficiência , Feminino , Genes Mitocondriais , Glucose/metabolismo , Homeostase , Inflamação/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias/genética , Obesidade/complicações , Ovariectomia , Receptores de Estrogênio/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Resultado do Tratamento , Regulação para Cima , Aumento de Peso
17.
J Endocr Soc ; 3(8): 1583-1594, 2019 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-31384719

RESUMO

CONTEXT: Studies suggest that menopausal hormone therapy (MHT) prevents type 2 diabetes (T2D). The combination of conjugated estrogens (CE) with the selective estrogen receptor modulator bazedoxifene (BZA) is an MHT that improves obesity and T2D in preclinical models of menopausal metabolic syndrome. The effect of CE/BZA on adiposity and glucose homeostasis in obese postmenopausal women is unknown. OBJECTIVE: To investigate the effect of CE/BZA on body composition, glucose homeostasis, and markers of inflammation in obese postmenopausal women. RESEARCH DESIGN INTERVENTION AND PARTICIPANTS: Randomized, double-blind, placebo-controlled pilot trial of 12 obese menopausal women assigned to 12-week treatment with CE 0.45 mg/BZA 20 mg (n = 7) or placebo (n = 5). At baseline and after 12 weeks, we assessed body composition (dual-energy X-ray absorptiometry), glucose homeostasis (IV glucose tolerance test), and inflammation biomarkers. RESULTS: Women treated with CE/BZA exhibited increased ß cell function using homeostatic model assessment-B [median (interquartile range) CE/BZA vs placebo: 18.5 (-0.9 to 320.6) µU/mM vs -25.5 (-39.9 to -0.1) µU/mM; P = 0.045], and decreased basal glucose concentrations (Gb) [-5.2 (-9.2 to -1.7) mg/dL vs 2.7 (0.9 to 4.9) mg/dL; P = 0.029]. Insulin sensitivity was higher in the placebo arm [1.35 (1.12 to 1.82) (µU/mL) min-1 vs -0.24 (-1.50 to 0.19) (µU/mL) min-1; P = 0.029]. No changes between treatment groups were observed for the acute insulin response to glucose (AIRg), the disposition index (DI), body composition, and inflammatory biomarkers. CONCLUSIONS: A 12-week treatment of obese postmenopausal women with CEs/BZA improves fasting ß cell function and glucose concentrations without change in AIRg, HOMA-IR, DI, body composition, or markers of inflammation.

18.
Mol Metab ; 22: 62-70, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30797705

RESUMO

OBJECTIVE: The endogenous estrogen 17ß-estradiol (E2) promotes metabolic homeostasis in premenopausal women. In a mouse model of post-menopausal metabolic syndrome, we reported that estrogens increased energy expenditure, thus preventing estrogen deficiency-induced adiposity. Estrogens' prevention of fat accumulation was associated with increased serum concentrations of fibroblast growth factor 21 (FGF21), suggesting that FGF21 participates in estrogens' promotion of energy expenditure. METHODS: We studied the effect of E2 on FGF21 production and the role of FGF21 in E2 stimulation of energy expenditure and prevention of adiposity, using female estrogen receptor (ER)- and FGF21-deficient mice fed a normal chow and a cohort of ovariectomized women from the French E3N prospective cohort study. RESULTS: E2 acting on the hepatocyte ERα increases hepatic expression and production of FGF21 in female mice. In vivo activation of ERα increases the transcription of Fgf21 via an estrogen response element outside the promoter of Fgf21. Treatment with E2 increases oxygen consumption and energy expenditure and prevents whole body fat accumulation in ovariectomized female WT mice. The effect of E2 on energy expenditure is not observed in FGF21-deficient mice. While E2 treatment still prevents fat accumulation in FGF21-deficient mice, this effect is decreased compared to WT mice. In an observational cohort of ovariectomized women, E2 treatment was associated with lower serum FGF21 concentrations, which may reflect a healthier metabolic profile. CONCLUSIONS: In female mice, E2 action on the hepatocyte ERα increases Fgf21 transcription and FGF21 production, thus promoting energy expenditure and partially decreasing fat accumulation.


Assuntos
Receptor alfa de Estrogênio/metabolismo , Fatores de Crescimento de Fibroblastos/biossíntese , Animais , Metabolismo Energético , Feminino , Fatores de Crescimento de Fibroblastos/deficiência , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout
19.
Diabetes ; 68(3): 490-501, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30305367

RESUMO

Estrogens favor glucose homeostasis primarily through the estrogen receptor-α (ERα), but the respective importance of nuclear ERα (NOER) and membrane ERα (MOER) pools to glucose homeostasis are unknown. We studied glucose homeostasis, insulin secretion, and insulin sensitivity in male and female mice expressing either the NOER or the MOER. Male and female MOER mice exhibited fasting and fed hyperglycemia and glucose intolerance. Female MOER mice displayed impaired central insulin signaling associated with hyperinsulinemia and insulin resistance due to unrestrained hepatic gluconeogenesis, without alterations in glucose-stimulated insulin secretion (GSIS). In contrast, male MOER mice did not exhibit detectable insulin resistance, but showed impaired GSIS associated with reduced brain glucose sensing. Female NOER mice exhibited milder hepatic insulin resistance and glucose intolerance. In conclusion, nuclear ERα signaling is predominant in maintaining glucose homeostasis in mice of both sexes. Lack of nuclear ERα alters the central control of insulin sensitivity in females and predominantly impairs the central regulation of insulin secretion in males.


Assuntos
Membrana Celular/metabolismo , Núcleo Celular/metabolismo , Receptor alfa de Estrogênio/metabolismo , Receptores de Estrogênio/metabolismo , Animais , Glicemia/metabolismo , Feminino , Imuno-Histoquímica , Insulina/sangue , Resistência à Insulina/fisiologia , Secreção de Insulina/fisiologia , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL
20.
Menopause ; 26(2): 172-181, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30130290

RESUMO

OBJECTIVE: A new strategy for menopausal hormone therapy replaces medroxyprogesterone with the selective estrogen receptor modulator bazedoxifene. While the agonist or antagonist activity of bazedoxifene has been examined in other tissues, the current study explored the impact of bazedoxifene on resistance artery reactivity. We hypothesized that bazedoxifene may induce greater vasoprotective effects than estradiol due to enhanced activation of the G-protein-coupled estrogen receptor. METHODS: We measured the vasodilation of mesenteric resistance arteries from adult male and female wild-type and G-protein-coupled estrogen receptor knockout mice (n = 58) in response to increasing concentrations of bazedoxifene, medroxyprogesterone, and estradiol, and also the impact of these compounds on the responses to phenylephrine and sodium nitroprusside. RESULTS: Bazedoxifene-induced vasorelaxation was greater than estradiol and blunted phenylephrine-induced contraction-an effect not observed with estradiol. Neither estradiol nor bazedoxifene altered relaxation to sodium nitroprusside. The combination of bazedoxifene + estradiol promoted greater vasodilation than medroxyprogesterone + estradiol, and opposed phenylephrine-induced contraction, whereas medroxyprogesterone + estradiol failed to attenuate this response. Both bazedoxifene + estradiol and medroxyprogesterone + estradiol enhanced sodium nitroprusside-induced relaxation in females. Vascular responses were similar in both sexes in wild-type and G-protein-coupled estrogen receptor knockout mice. CONCLUSION: Bazedoxifene and bazedoxifene + estradiol relaxed mesenteric arteries and opposed vasoconstriction to a greater degree than estradiol or medroxyprogesterone + estradiol. These effects were independent of sex and G-protein-coupled estrogen receptor expression. We conclude that bazedoxifene may provide vascular benefits over estrogen alone or estrogen plus progestogen combinations in postmenopausal women.


Assuntos
Estradiol/farmacologia , Estrogênios/farmacologia , Indóis/farmacologia , Moduladores Seletivos de Receptor Estrogênico/farmacologia , Vasoconstrição/efeitos dos fármacos , Vasodilatação/efeitos dos fármacos , Animais , Quimioterapia Combinada , Endotélio Vascular/efeitos dos fármacos , Endotélio Vascular/fisiologia , Receptor alfa de Estrogênio/metabolismo , Receptor beta de Estrogênio/metabolismo , Feminino , Técnicas de Inativação de Genes , Masculino , Medroxiprogesterona/farmacologia , Camundongos , Camundongos Knockout , Receptores de Estrogênio/genética , Receptores de Estrogênio/metabolismo , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA