RESUMO
Single-molecule localization microscopy provides insights into the nanometer-scale spatial organization of proteins in cells, however it does not provide information on their conformation and orientation, which are key functional signatures. Detecting single molecules' orientation in addition to their localization in cells is still a challenging task, in particular in dense cell samples. Here, we present a polarization-splitting scheme which combines Stochastic Optical Reconstruction Microscopy (STORM) with single molecule 2D orientation and wobbling measurements, without requiring a strong deformation of the imaged point spread function. This method called 4polar-STORM allows, thanks to a control of its detection numerical aperture, to determine both single molecules' localization and orientation in 2D and to infer their 3D orientation. 4polar-STORM is compatible with relatively high densities of diffraction-limited spots in an image, and is thus ideally placed for the investigation of dense protein assemblies in cells. We demonstrate the potential of this method in dense actin filament organizations driving cell adhesion and motility.
Assuntos
Citoesqueleto de Actina/fisiologia , Imageamento Tridimensional , Microscopia , Animais , Linhagem Celular Tumoral , Humanos , Melanoma Experimental/patologia , Camundongos , Pseudópodes/metabolismo , Imagem Individual de Molécula , Fibras de EstresseRESUMO
Septins, a family of GTP-binding proteins that assemble into higher order structures, interface with the membrane, actin filaments and microtubules, and are thus important regulators of cytoarchitecture. Septin 9 (SEPT9), which is frequently overexpressed in tumors and mutated in hereditary neuralgic amyotrophy (HNA), mediates the binding of septins to microtubules, but the molecular determinants of this interaction remained uncertain. We demonstrate that a short microtubule-associated protein (MAP)-like motif unique to SEPT9 isoform 1 (SEPT9_i1) drives septin octamer-microtubule interaction in cells and in vitro reconstitutions. Septin-microtubule association requires polymerizable septin octamers harboring SEPT9_i1. Although outside of the MAP-like motif, HNA mutations abrogate this association, identifying a putative regulatory domain. Removal of this domain from SEPT9_i1 sequesters septins on microtubules, promotes microtubule stability and alters actomyosin fiber distribution and tension. Thus, we identify key molecular determinants and potential regulatory roles of septin-microtubule interaction, paving the way to deciphering the mechanisms underlying septin-associated pathologies. This article has an associated First Person interview with the first author of the paper.
Assuntos
Septinas , Fibras de Estresse , Humanos , Proteínas Associadas aos Microtúbulos , Microtúbulos/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Septinas/genética , Septinas/metabolismo , Fibras de Estresse/metabolismoRESUMO
Focal adhesion (FA) turnover depends on microtubules and actin. Microtubule ends are captured at FAs, where they induce rapid FA disassembly. However, actin's roles are less clear. Here, we use polarization-resolved microscopy, FRAP, live cell imaging, and a mutant of Adenomatous polyposis coli (APC-m4) defective in actin nucleation to investigate the role of actin assembly in FA turnover. We show that APC-mediated actin assembly is critical for maintaining normal F-actin levels, organization, and dynamics at FAs, along with organization of FA components. In WT cells, microtubules are captured repeatedly at FAs as they mature, but once a FA reaches peak maturity, the next microtubule capture event leads to delivery of an autophagosome, triggering FA disassembly. In APC-m4 cells, microtubule capture frequency and duration are altered, and there are long delays between autophagosome delivery and FA disassembly. Thus, APC-mediated actin assembly is required for normal feedback between microtubules and FAs, and maintaining FAs in a state "primed" for microtubule-induced turnover.
Assuntos
Actinas/metabolismo , Proteína da Polipose Adenomatosa do Colo/metabolismo , Adesões Focais/metabolismo , Microtúbulos/metabolismo , Humanos , Células Tumorais CultivadasRESUMO
Animal cell cytokinesis requires a contractile ring of crosslinked actin filaments and myosin motors. How contractile rings form and are stabilized in dividing cells remains unclear. We address this problem by focusing on septins, highly conserved proteins in eukaryotes whose precise contribution to cytokinesis remains elusive. We use the cleavage of the Drosophila melanogaster embryo as a model system, where contractile actin rings drive constriction of invaginating membranes to produce an epithelium in a manner akin to cell division. In vivo functional studies show that septins are required for generating curved and tightly packed actin filament networks. In vitro reconstitution assays show that septins alone bundle actin filaments into rings, accounting for the defects in actin ring formation in septin mutants. The bundling and bending activities are conserved for human septins, and highlight unique functions of septins in the organization of contractile actomyosin rings.
Assuntos
Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Septinas/metabolismo , Actomiosina/metabolismo , Animais , Divisão Celular , Fase de Clivagem do Zigoto/metabolismo , Citocinese/fisiologia , Drosophila melanogaster/embriologia , Drosophila melanogaster/genética , Humanos , Proteínas Motores Moleculares/genética , Proteínas Motores Moleculares/metabolismo , Mutação , Miosinas/genética , Miosinas/metabolismo , Ligação Proteica/fisiologia , Septinas/genéticaRESUMO
Most PRKAR1A tumorigenic mutations lead to nonsense mRNA that is decayed; tumor formation has been associated with an increase in type II protein kinase A (PKA) subunits. The IVS6+1G>T PRKAR1A mutation leads to a protein lacking exon 6 sequences [R1 alpha Delta 184-236 (R1 alpha Delta 6)]. We compared in vitro R1 alpha Delta 6 with wild-type (wt) R1 alpha. We assessed PKA activity and subunit expression, phosphorylation of target molecules, and properties of wt-R1 alpha and mutant (mt) R1 alpha; we observed by confocal microscopy R1 alpha tagged with green fluorescent protein and its interactions with Cerulean-tagged catalytic subunit (C alpha). Introduction of the R1 alpha Delta 6 led to aberrant cellular morphology and higher PKA activity but no increase in type II PKA subunits. There was diffuse, cytoplasmic localization of R1 alpha protein in wt-R1 alpha- and R1 alpha Delta 6-transfected cells but the former also exhibited discrete aggregates of R1 alpha that bound C alpha; these were absent in R1 alpha Delta 6-transfected cells and did not bind C alpha at baseline or in response to cyclic AMP. Other changes induced by R1 alpha Delta 6 included decreased nuclear C alpha. We conclude that R1 alpha Delta 6 leads to increased PKA activity through the mt-R1 alpha decreased binding to C alpha and does not involve changes in other PKA subunits, suggesting that a switch to type II PKA activity is not necessary for increased kinase activity or tumorigenesis.
Assuntos
Subunidade RIalfa da Proteína Quinase Dependente de AMP Cíclico/genética , Proteínas Quinases Dependentes de AMP Cíclico/fisiologia , Mutação , Invasividade Neoplásica/genética , Neoplasias/genética , Animais , Células COS , Forma Celular/genética , Células Cultivadas , Chlorocebus aethiops , Subunidade RIalfa da Proteína Quinase Dependente de AMP Cíclico/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/genética , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Deleção de Genes , Células HeLa , Humanos , Ligação Proteica , Subunidades Proteicas/metabolismo , RNA Mensageiro/metabolismo , Distribuição Tecidual , TransfecçãoRESUMO
Ferritin is a symmetric, 24-subunit iron-storage complex assembled of H and L chains. It is found in bacteria, plants, and animals and in two classes of mutations in the human L-chain gene, resulting in hereditary hyperferritinemia cataract syndrome or in neuroferritinopathy. Here, we examined systemic and cellular ferritin regulation and trafficking in the model organism Drosophila melanogaster. We showed that ferritin H and L transcripts are coexpressed during embryogenesis and that both subunits are essential for embryonic development. Ferritin overexpression impaired the survival of iron-deprived flies. In vivo expression of GFP-tagged holoferritin confirmed that iron-loaded ferritin molecules traffic through the Golgi organelle and are secreted into hemolymph. A constant ratio of ferritin H and L subunits, secured via tight post-transcriptional regulation, is characteristic of the secreted ferritin in flies. Differential cellular expression, conserved post-transcriptional regulation via the iron regulatory element, and distinct subcellular localization of the ferritin subunits prior to the assembly of holoferritin are all important steps mediating iron homeostasis. Our study revealed both conserved features and insect-specific adaptations of ferritin nanocages and provides novel imaging possibilities for their in vivo characterization.
Assuntos
Apoferritinas/genética , Drosophila melanogaster/genética , Processamento de Imagem Assistida por Computador , Ferro/metabolismo , Animais , Animais Geneticamente Modificados , Apoferritinas/metabolismo , Sequência de Bases , Drosophila melanogaster/embriologia , Drosophila melanogaster/metabolismo , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Técnicas Genéticas , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Homeostase , Hibridização In Situ , Larva/crescimento & desenvolvimento , Larva/metabolismo , Masculino , Dados de Sequência Molecular , Sondas RNA , Elementos de Resposta/fisiologia , Frações SubcelularesRESUMO
The regulatory subunit 1-alpha (RIalpha) of protein kinase A (PKA) and the mTOR kinase are involved in a common pathway regulating mammalian autophagy. RIalpha was found to localize on Rab7-positive late endosomes and on LC3-positive autophagosomal membranes in cultured cells. RIalpha was also shown to physically interact with mTOR kinase and affect its phosphorylation and activity. In this addendum, we further explore the subcellular distribution of mTOR related to RIalpha and LC3. We present experiments showing that mTOR colocalizes with RIalpha-, Rab7- and LC3-positive membranes in cultured cells. Because RIalpha regulates the phosphorylation and activity of mTOR kinase, which we now show localizes on autophagosomal membranes, the possibility emerges that the RIalpha-mTOR complex acts at the level of autophagosome maturation.
Assuntos
Autofagia , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Fagossomos/metabolismo , Proteínas Quinases/metabolismo , Animais , Subunidade RIalfa da Proteína Quinase Dependente de AMP Cíclico , Células HeLa , Humanos , Camundongos , Ligação Proteica , Serina-Treonina Quinases TORRESUMO
The human PRKAR1A gene encodes the regulatory subunit 1-alpha (RIalpha) of the cAMP-dependent protein kinase A (PKA) holoenzyme. Regulation of the catalytic activity of PKA is the only well-studied function of RIalpha. Inactivating PRKAR1A mutations cause primary pigmented nodular adrenocortical disease (PPNAD) or Carney complex (CNC), an inherited syndrome associated with abnormal skin pigmentation and multiple neoplasias, including PPNAD. Histochemistry of tissues from CNC patients is indicative of autophagic deficiency and this led us to investigate the relationship between RIalpha and mammalian autophagy. We found that fluorescently tagged RIalpha associates with late endosomes and autophagosomes in cultured cells. The number of autophagosomes in prkar1a-/- mouse embryonic fibroblasts (MEFs) was reduced compared with wild-type MEFs. RIalpha co-immunoprecipitated with mTOR kinase, a major regulator of autophagy. Phosphorylated-mTOR levels and mTOR activity were dramatically increased in prkar1a-/- mouse cells, and in HEK 293 cells with RIalpha levels reduced by siRNA. Finally, phosphorylated-mTOR levels and mTOR activity were increased in CNC cells and in PPNAD tissues. These data suggest that RIalpha deficiency decreases autophagy by the activation of mTOR, providing a molecular basis to autophagic deficiency in PPNAD.
Assuntos
Autofagia/fisiologia , Proteínas Quinases Dependentes de AMP Cíclico/deficiência , Proteínas Quinases/metabolismo , Proteínas/metabolismo , Doenças do Córtex Suprarrenal/genética , Doenças do Córtex Suprarrenal/metabolismo , Animais , Sequência de Bases , Linhagem Celular , Células Cultivadas , Subunidade RIalfa da Proteína Quinase Dependente de AMP Cíclico , Proteínas Quinases Dependentes de AMP Cíclico/genética , DNA Complementar/genética , Fibroblastos/metabolismo , Células HeLa , Humanos , Camundongos , Camundongos Knockout , Mutação , Fagossomos/metabolismo , Fosforilação , Proteínas/genética , RNA Interferente Pequeno/genética , Serina-Treonina Quinases TORRESUMO
The genomic RNA of rabies virus is always complexed with the viral nucleoprotein (N). This N-RNA complex is the template for viral transcription and replication. The viral phosphoprotein (P) has two functions during the infection process: it binds through its carboxy-terminus to N in the N-RNA complex and at the same time with an amino-terminal domain to the polymerase and in this way fixes the polymerase to its template. The second function of P is to bind to newly produced N in the infected cell in order to prevent that N binds non-specifically and irreversibly to cellular RNA. In order to identify the part of the phosphoprotein that binds to N and keeps the latter soluble, we isolated the N-P complex, performed sequential protease digestions, and determined the identity of the remaining N and P peptides in the purified digested complex. Although the digestion steps removed short sequences of N, most of N remained intact and soluble, indicating that the overall structure was not affected. Most of P, including the carboxy-terminal N-RNA-binding domain, was removed during the first digestion step. N-terminal sequencing and mass spectrometry analysis identified a P peptide containing residues 4-40 that remained associated with N. Coexpression and coimmunoprecipitation experiments and yeast two-hybrid experiments showed that this peptide alone could bind to N in vivo.
Assuntos
Chaperonas Moleculares/metabolismo , Proteínas do Nucleocapsídeo/metabolismo , Fragmentos de Peptídeos/metabolismo , Fosfoproteínas/metabolismo , Vírus da Raiva/fisiologia , Proteínas Estruturais Virais/metabolismo , Sequência de Aminoácidos , Imunoprecipitação , Chaperonas Moleculares/genética , Dados de Sequência Molecular , Proteínas do Nucleocapsídeo/química , Fosfoproteínas/química , Fosfoproteínas/genética , Ligação Proteica , Mapeamento de Interação de Proteínas , Estrutura Secundária de Proteína , Vírus da Raiva/genética , Alinhamento de Sequência , Tripsina/metabolismo , Técnicas do Sistema de Duplo-Híbrido , Proteínas Estruturais Virais/química , Proteínas Estruturais Virais/genéticaRESUMO
Rab proteins and their effectors facilitate vesicular transport by tethering donor vesicles to their respective target membranes. By using gene trap insertional mutagenesis, we identified Rab9, which mediates late-endosome-to-trans-Golgi-network trafficking, among several candidate host genes whose disruption allowed the survival of Marburg virus-infected cells, suggesting that Rab9 is utilized in Marburg replication. Although Rab9 has not been implicated in human immunodeficiency virus (HIV) replication, previous reports suggested that the late endosome is an initiation site for HIV assembly and that TIP47-dependent trafficking out of the late endosome to the trans-Golgi network facilitates the sorting of HIV Env into virions budding at the plasma membrane. We examined the role of Rab9 in the life cycles of HIV and several unrelated viruses, using small interfering RNA (siRNA) to silence Rab9 expression before viral infection. Silencing Rab9 expression dramatically inhibited HIV replication, as did silencing the host genes encoding TIP47, p40, and PIKfyve, which also facilitate late-endosome-to-trans-Golgi vesicular transport. In addition, silencing studies revealed that HIV replication was dependent on the expression of Rab11A, which mediates trans-Golgi-to-plasma-membrane transport, and that increased HIV Gag was sequestered in a CD63+ endocytic compartment in a cell line stably expressing Rab9 siRNA. Replication of the enveloped Ebola, Marburg, and measles viruses was inhibited with Rab9 siRNA, although the non-enveloped reovirus was insensitive to Rab9 silencing. These results suggest that Rab9 is an important cellular target for inhibiting diverse viruses and help to define a late-endosome-to-plasma-membrane vesicular transport pathway important in viral assembly.