Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Development ; 149(1)2022 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-34878091

RESUMO

A major feature of Saethre-Chotzen syndrome is coronal craniosynostosis, the fusion of the frontal and parietal bones at the coronal suture. It is caused by heterozygous loss-of-function mutations in either of the bHLH transcription factors TWIST1 and TCF12. Although compound heterozygous Tcf12; Twist1 mice display severe coronal synostosis, the individual role of Tcf12 had remained unexplored. Here, we show that Tcf12 controls several key processes in calvarial development, including the rate of frontal and parietal bone growth, and the boundary between sutural and osteogenic cells. Genetic analysis supports an embryonic requirement for Tcf12 in suture formation, as combined deletion of Tcf12 in embryonic neural crest and mesoderm, but not in postnatal suture mesenchyme, disrupts the coronal suture. We also detected asymmetric distribution of mesenchymal cells on opposing sides of the wild-type frontal and parietal bones, which prefigures later bone overlap at the sutures. In Tcf12 mutants, reduced asymmetry is associated with bones meeting end-on-end, possibly contributing to synostosis. Our results support embryonic requirements of Tcf12 in proper formation of the overlapping coronal suture.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Craniossinostoses/metabolismo , Osteogênese , Crânio/embriologia , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Craniossinostoses/embriologia , Craniossinostoses/genética , Células-Tronco Mesenquimais/metabolismo , Mesoderma/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Crista Neural/metabolismo , Crânio/metabolismo
2.
Nat Commun ; 12(1): 4797, 2021 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-34376651

RESUMO

Sutures separate the flat bones of the skull and enable coordinated growth of the brain and overlying cranium. The coronal suture is most commonly fused in monogenic craniosynostosis, yet the unique aspects of its development remain incompletely understood. To uncover the cellular diversity within the murine embryonic coronal suture, we generated single-cell transcriptomes and performed extensive expression validation. We find distinct pre-osteoblast signatures between the bone fronts and periosteum, a ligament-like population above the suture that persists into adulthood, and a chondrogenic-like population in the dura mater underlying the suture. Lineage tracing reveals an embryonic Six2+ osteoprogenitor population that contributes to the postnatal suture mesenchyme, with these progenitors being preferentially affected in a Twist1+/-; Tcf12+/- mouse model of Saethre-Chotzen Syndrome. This single-cell atlas provides a resource for understanding the development of the coronal suture and the mechanisms for its loss in craniosynostosis.


Assuntos
Suturas Cranianas/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Osteogênese/genética , Análise de Célula Única/métodos , Transcriptoma/genética , Acrocefalossindactilia/embriologia , Acrocefalossindactilia/genética , Acrocefalossindactilia/patologia , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Suturas Cranianas/citologia , Suturas Cranianas/embriologia , Dura-Máter/citologia , Dura-Máter/embriologia , Dura-Máter/metabolismo , Mesoderma/citologia , Mesoderma/embriologia , Mesoderma/metabolismo , Camundongos Knockout , Camundongos Transgênicos , Osteoblastos/citologia , Osteoblastos/metabolismo , RNA-Seq/métodos , Crânio/citologia , Crânio/embriologia , Crânio/metabolismo , Proteína 1 Relacionada a Twist/genética , Proteína 1 Relacionada a Twist/metabolismo
3.
Elife ; 72018 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-30375332

RESUMO

Cranial sutures separate the skull bones and house stem cells for bone growth and repair. In Saethre-Chotzen syndrome, mutations in TCF12 or TWIST1 ablate a specific suture, the coronal. This suture forms at a neural-crest/mesoderm interface in mammals and a mesoderm/mesoderm interface in zebrafish. Despite this difference, we show that combinatorial loss of TCF12 and TWIST1 homologs in zebrafish also results in specific loss of the coronal suture. Sequential bone staining reveals an initial, directional acceleration of bone production in the mutant skull, with subsequent localized stalling of bone growth prefiguring coronal suture loss. Mouse genetics further reveal requirements for Twist1 and Tcf12 in both the frontal and parietal bones for suture patency, and to maintain putative progenitors in the coronal region. These findings reveal conservation of coronal suture formation despite evolutionary shifts in embryonic origins, and suggest that the coronal suture might be especially susceptible to imbalances in progenitor maintenance and osteoblast differentiation.


Assuntos
Acrocefalossindactilia/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Craniossinostoses/genética , Proteína 1 Relacionada a Twist/genética , Acrocefalossindactilia/patologia , Animais , Desenvolvimento Ósseo , Craniossinostoses/patologia , Modelos Animais de Doenças , Regulação da Expressão Gênica no Desenvolvimento , Técnicas de Inativação de Genes , Humanos , Camundongos , Mutação , Crista Neural/crescimento & desenvolvimento , Crista Neural/patologia , Osteogênese/genética , Peixe-Zebra/genética
4.
Sci Rep ; 7(1): 2497, 2017 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-28566723

RESUMO

Whereas Jagged1-Notch2 signaling is known to pattern the sensorineural components of the inner ear, its role in middle ear development has been less clear. We previously reported a role for Jagged-Notch signaling in shaping skeletal elements derived from the first two pharyngeal arches of zebrafish. Here we show a conserved requirement for Jagged1-Notch2 signaling in patterning the stapes and incus middle ear bones derived from the equivalent pharyngeal arches of mammals. Mice lacking Jagged1 or Notch2 in neural crest-derived cells (NCCs) of the pharyngeal arches display a malformed stapes. Heterozygous Jagged1 knockout mice, a model for Alagille Syndrome (AGS), also display stapes and incus defects. We find that Jagged1-Notch2 signaling functions early to pattern the stapes cartilage template, with stapes malformations correlating with hearing loss across all frequencies. We observe similar stapes defects and hearing loss in one patient with heterozygous JAGGED1 loss, and a diversity of conductive and sensorineural hearing loss in nearly half of AGS patients, many of which carry JAGGED1 mutations. Our findings reveal deep conservation of Jagged1-Notch2 signaling in patterning the pharyngeal arches from fish to mouse to man, despite the very different functions of their skeletal derivatives in jaw support and sound transduction.


Assuntos
Síndrome de Alagille/genética , Perda Auditiva Neurossensorial/genética , Proteína Jagged-1/genética , Receptor Notch2/genética , Síndrome de Alagille/fisiopatologia , Animais , Orelha Média/crescimento & desenvolvimento , Orelha Média/patologia , Regulação da Expressão Gênica no Desenvolvimento/genética , Perda Auditiva Neurossensorial/patologia , Humanos , Camundongos , Camundongos Knockout , Crista Neural/crescimento & desenvolvimento , Crista Neural/patologia , Transdução de Sinais/genética
5.
Development ; 143(3): 504-15, 2016 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-26718006

RESUMO

The role of the Hippo signaling pathway in cranial neural crest (CNC) development is poorly understood. We used the Wnt1(Cre) and Wnt1(Cre2SOR) drivers to conditionally ablate both Yap and Taz in the CNC of mice. When using either Cre driver, Yap and Taz deficiency in the CNC resulted in enlarged, hemorrhaging branchial arch blood vessels and hydrocephalus. However, Wnt1(Cre2SOR) mutants had an open cranial neural tube phenotype that was not evident in Wnt1(Cre) mutants. In O9-1 CNC cells, the loss of Yap impaired smooth muscle cell differentiation. RNA-sequencing data indicated that Yap and Taz regulate genes encoding Fox transcription factors, specifically Foxc1. Proliferation was reduced in the branchial arch mesenchyme of Yap and Taz CNC conditional knockout (CKO) embryos. Moreover, Yap and Taz CKO embryos had cerebellar aplasia similar to Dandy-Walker spectrum malformations observed in human patients and mouse embryos with mutations in Foxc1. In embryos and O9-1 cells deficient for Yap and Taz, Foxc1 expression was significantly reduced. Analysis of Foxc1 regulatory regions revealed a conserved recognition element for the Yap and Taz DNA binding co-factor Tead. ChIP-PCR experiments supported the conclusion that Foxc1 is directly regulated by the Yap-Tead complex. Our findings uncover important roles for Yap and Taz in CNC diversification and development.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Face/embriologia , Crista Neural/embriologia , Fosfoproteínas/metabolismo , Crânio/embriologia , Animais , Apoptose/genética , Proteínas de Ciclo Celular , Diferenciação Celular , Proliferação de Células , Perda do Embrião/patologia , Embrião de Mamíferos/metabolismo , Embrião de Mamíferos/patologia , Deleção de Genes , Regulação da Expressão Gênica no Desenvolvimento , Hemorragia/patologia , Hidrocefalia/embriologia , Hidrocefalia/patologia , Mandíbula/patologia , Camundongos Knockout , Miócitos de Músculo Liso/citologia , Defeitos do Tubo Neural/patologia , Fenótipo , Análise de Sequência de RNA , Transdução de Sinais , Transativadores , Proteínas de Sinalização YAP
6.
Nat Genet ; 45(3): 304-7, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23354436

RESUMO

Craniosynostosis, the premature fusion of the cranial sutures, is a heterogeneous disorder with a prevalence of ∼1 in 2,200 (refs. 1,2). A specific genetic etiology can be identified in ∼21% of cases, including mutations of TWIST1, which encodes a class II basic helix-loop-helix (bHLH) transcription factor, and causes Saethre-Chotzen syndrome, typically associated with coronal synostosis. Using exome sequencing, we identified 38 heterozygous TCF12 mutations in 347 samples from unrelated individuals with craniosynostosis. The mutations predominantly occurred in individuals with coronal synostosis and accounted for 32% and 10% of subjects with bilateral and unilateral pathology, respectively. TCF12 encodes one of three class I E proteins that heterodimerize with class II bHLH proteins such as TWIST1. We show that TCF12 and TWIST1 act synergistically in a transactivation assay and that mice doubly heterozygous for loss-of-function mutations in Tcf12 and Twist1 have severe coronal synostosis. Hence, the dosage of TCF12-TWIST1 heterodimers is critical for normal coronal suture development.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Craniossinostoses , Proteínas Nucleares/genética , Proteína 1 Relacionada a Twist/genética , Acrocefalossindactilia/complicações , Acrocefalossindactilia/genética , Acrocefalossindactilia/patologia , Animais , Suturas Cranianas/crescimento & desenvolvimento , Suturas Cranianas/patologia , Craniossinostoses/complicações , Craniossinostoses/genética , Craniossinostoses/patologia , Dimerização , Exoma , Regulação da Expressão Gênica no Desenvolvimento , Heterozigoto , Humanos , Camundongos , Camundongos Transgênicos , Dados de Sequência Molecular , Mutação , Análise de Sequência de DNA , Ativação Transcricional
7.
Hepatology ; 49(3): 998-1011, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19085956

RESUMO

UNLABELLED: The knowledge concerning fetal hepatic stellate cells (HSCs) is scarce, and their cell lineage and functions are largely unknown. The current study isolated fetal liver mesenchymal cells from a mouse expressing beta-galactosidase under the control of Msx2 promoter by fluorescence-activated cell sorting (FACS) and surveyed marker genes by microarray analysis. Based on the location and immunostaining with conventional and newly disclosed markers, we have identified three distinct populations of fetal liver mesenchymal cells expressing both desmin and p75 neurotrophin receptor (p75NTR): HSCs in the liver parenchyma; perivascular mesenchymal cells expressing alpha-smooth muscle actin (alpha-SMA); and submesothelial cells associated with the basal lamina beneath mesothelial cells and expressing activated leukocyte cell adhesion molecule (ALCAM) and platelet-derived growth factor receptor alpha. A transitional cell type from the submesothelial cell phenotype to fetal HSCs was also identified near the liver surface. Mesothelial cells expressed podoplanin and ALCAM. Ki-67 staining showed that proliferative activity of the submesothelial cells is higher than that of mesothelial cells and transitional cells. Using anti-ALCAM antibodies, submesothelial and mesothelial cells were isolated by FACS. The ALCAM(+) cells expressed hepatocyte growth factor and pleiotrophin. In culture, the ALCAM(+) cells rapidly acquired myofibroblastic morphology and alpha-SMA expression. The ALCAM(+) cells formed intracellular lipid droplets when embedded in collagen gel and treated with retinol, suggesting the potential for ALCAM(+) cells to differentiate to HSCs. Finally, we demonstrated that fetal HSCs, submesothelial cells, and perivascular mesenchymal cells are all derived from mesoderm by using MesP1-Cre and ROSA26 reporter mice. CONCLUSION: Fetal HSCs, submesothelial cells, and perivascular mesenchymal cells are mesodermal in origin, and ALCAM(+) submesothelial cells may be a precursor for HSCs in developing liver.


Assuntos
Endotélio Vascular/citologia , Células Epiteliais/citologia , Células Estreladas do Fígado/citologia , Fígado/citologia , Fígado/embriologia , Células-Tronco Mesenquimais/citologia , Organogênese/fisiologia , Molécula de Adesão de Leucócito Ativado/metabolismo , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Diferenciação Celular/fisiologia , Células Cultivadas , Desmina/metabolismo , Endotélio Vascular/metabolismo , Células Epiteliais/metabolismo , Feminino , Células Estreladas do Fígado/metabolismo , Proteínas de Homeodomínio/metabolismo , Óperon Lac/genética , Fígado/metabolismo , Masculino , Glicoproteínas de Membrana/metabolismo , Células-Tronco Mesenquimais/metabolismo , Camundongos , Camundongos Transgênicos , Receptores de Fator de Crescimento Neural/metabolismo
8.
Mech Dev ; 124(9-10): 729-45, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17693062

RESUMO

The homeobox genes Msx1 and Msx2 function as transcriptional regulators that control cellular proliferation and differentiation during embryonic development. Mutations in the Msx1 and Msx2 genes in mice disrupt tissue-tissue interactions and cause multiple craniofacial malformations. Although Msx1 and Msx2 are both expressed throughout the entire development of the frontal bone, the frontal bone defect in Msx1 or Msx2 null mutants is rather mild, suggesting the possibility of functional compensation between Msx1 and Msx2 during early frontal bone development. To investigate this hypothesis, we generated Msx1(-/-);Msx2(-/-) mice. These double mutant embryos died at E17 to E18 with no formation of the frontal bone. There was no apparent defect in CNC migration into the presumptive frontal bone primordium, but differentiation of the frontal mesenchyme and establishment of the frontal primordium was defective, indicating that Msx1 and Msx2 genes are specifically required for osteogenesis in the cranial neural crest lineage within the frontal bone primordium. Mechanistically, our data suggest that Msx genes are critical for the expression of Runx2 in the frontonasal subpopulation of cranial neural crest cells and for differentiation of the osteogenic lineage. This early function of the Msx genes is likely independent of the Bmp signaling pathway.


Assuntos
Diferenciação Celular/fisiologia , Proteínas de Ligação a DNA/fisiologia , Osso Frontal/embriologia , Proteínas de Homeodomínio/fisiologia , Fator de Transcrição MSX1/fisiologia , Crista Neural/citologia , Animais , Diferenciação Celular/genética , Subunidade alfa 1 de Fator de Ligação ao Core/biossíntese , Subunidade alfa 1 de Fator de Ligação ao Core/genética , Proteínas de Ligação a DNA/genética , Osso Frontal/citologia , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Proteínas de Homeodomínio/genética , Fator de Transcrição MSX1/genética , Camundongos , Camundongos Knockout , Osteogênese/genética
9.
Hum Mol Genet ; 15(8): 1319-28, 2006 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-16540516

RESUMO

Boundaries between cellular compartments often serve as signaling interfaces during embryogenesis. The coronal suture is a major growth center of the skull vault and develops at a boundary between cells derived from neural crest and mesodermal origin, forming the frontal and parietal bones, respectively. Premature fusion of these bones, termed coronal synostosis, is a common human developmental anomaly. Known causes of coronal synostosis include haploinsufficiency of TWIST1 and a gain of function mutation in MSX2. In Twist1(+/-) mice with coronal synostosis, we found that the frontal-parietal boundary is defective. Specifically, neural crest cells invade the undifferentiated mesoderm of the Twist1(+/-) mutant coronal suture. This boundary defect is accompanied by an expansion in Msx2 expression and reduction in ephrin-A4 distribution. Reduced dosage of Msx2 in the Twist1 mutant background restores the expression of ephrin-A4, rescues the suture boundary and inhibits craniosynostosis. Underlining the importance of ephrin-A4, we identified heterozygous mutations in the human orthologue, EFNA4, in three of 81 patients with non-syndromic coronal synostosis. This provides genetic evidence that Twist1, Msx2 and Efna4 function together in boundary formation and the pathogenesis of coronal synostosis.


Assuntos
Suturas Cranianas/metabolismo , Craniossinostoses/metabolismo , Craniossinostoses/patologia , Efrinas/metabolismo , Mesoderma/metabolismo , Crista Neural/metabolismo , Receptores da Família Eph/metabolismo , Animais , Sequência de Bases , Células COS , Células Cultivadas , Chlorocebus aethiops , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Embrião de Mamíferos , Efrina-A2/genética , Efrina-A2/metabolismo , Efrina-A4/genética , Efrina-A4/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Heterozigoto , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Humanos , Imuno-Histoquímica , Mesoderma/citologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Dados de Sequência Molecular , Mutação , Crista Neural/citologia , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Fenótipo , Transdução de Sinais , Células Tumorais Cultivadas , Proteína 1 Relacionada a Twist/genética , Proteína 1 Relacionada a Twist/metabolismo
10.
Development ; 132(22): 4937-50, 2005 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-16221730

RESUMO

The neural crest is a multipotent, migratory cell population that contributes to a variety of tissues and organs during vertebrate embryogenesis. Here, we focus on the function of Msx1 and Msx2, homeobox genes implicated in several disorders affecting craniofacial development in humans. We show that Msx1/2 mutants exhibit profound deficiencies in the development of structures derived from the cranial and cardiac neural crest. These include hypoplastic and mispatterned cranial ganglia, dysmorphogenesis of pharyngeal arch derivatives and abnormal organization of conotruncal structures in the developing heart. The expression of the neural crest markers Ap-2alpha, Sox10 and cadherin 6 (cdh6) in Msx1/2 mutants revealed an apparent retardation in the migration of subpopulations of preotic and postotic neural crest cells, and a disorganization of neural crest cells paralleling patterning defects in cranial nerves. In addition, normally distinct subpopulations of migrating crest underwent mixing. The expression of the hindbrain markers Krox20 and Epha4 was altered in Msx1/2 mutants, suggesting that defects in neural crest populations may result, in part, from defects in rhombomere identity. Msx1/2 mutants also exhibited increased Bmp4 expression in migratory cranial neural crest and pharyngeal arches. Finally, proliferation of neural crest-derived mesenchyme was unchanged, but the number of apoptotic cells was increased substantially in neural crest-derived cells that contribute to the cranial ganglia and the first pharyngeal arch. This increase in apoptosis may contribute to the mispatterning of the cranial ganglia and the hypoplasia of the first arch.


Assuntos
Padronização Corporal/genética , Proteínas de Ligação a DNA/deficiência , Proteínas de Ligação a DNA/genética , Proteínas de Homeodomínio/genética , Fator de Transcrição MSX1/deficiência , Fator de Transcrição MSX1/genética , Crista Neural/embriologia , Animais , Proteína Morfogenética Óssea 4 , Proteínas Morfogenéticas Ósseas/metabolismo , Anormalidades Cardiovasculares/genética , Movimento Celular/genética , Cruzamentos Genéticos , Proteínas de Ligação a DNA/fisiologia , Proteína 2 de Resposta de Crescimento Precoce/biossíntese , Proteína 2 de Resposta de Crescimento Precoce/genética , Proteínas de Homeodomínio/biossíntese , Proteínas de Homeodomínio/fisiologia , Fator de Transcrição MSX1/fisiologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Knockout , Defeitos do Tubo Neural/embriologia , Defeitos do Tubo Neural/genética , Receptor EphA4/biossíntese , Receptor EphA4/genética , Rombencéfalo/embriologia , Rombencéfalo/metabolismo , Crânio/anormalidades , Crânio/embriologia , Fatores de Transcrição/biossíntese , Fatores de Transcrição/genética
11.
Dev Biol ; 241(1): 106-16, 2002 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-11784098

RESUMO

During mammalian evolution, expansion of the cerebral hemispheres was accompanied by expansion of the frontal and parietal bones of the skull vault and deployment of the coronal (fronto-parietal) and sagittal (parietal-parietal) sutures as major growth centres. Using a transgenic mouse with a permanent neural crest cell lineage marker, Wnt1-Cre/R26R, we show that both sutures are formed at a neural crest-mesoderm interface: the frontal bones are neural crest-derived and the parietal bones mesodermal, with a tongue of neural crest between the two parietal bones. By detailed analysis of neural crest migration pathways using X-gal staining, and mesodermal tracing by DiI labelling, we show that the neural crest-mesodermal tissue juxtaposition that later forms the coronal suture is established at E9.5 as the caudal boundary of the frontonasal mesenchyme. As the cerebral hemispheres expand, they extend caudally, passing beneath the neural crest-mesodermal interface within the dermis, carrying with them a layer of neural crest cells that forms their meningeal covering. Exposure of embryos to retinoic acid at E10.0 reduces this meningeal neural crest and inhibits parietal ossification, suggesting that intramembranous ossification of this mesodermal bone requires interaction with neural crest-derived meninges, whereas ossification of the neural crest-derived frontal bone is autonomous. These observations provide new perspectives on skull evolution and on human genetic abnormalities of skull growth and ossification.


Assuntos
Crânio/embriologia , Proteínas de Peixe-Zebra , Animais , Evolução Biológica , Padronização Corporal , Encéfalo/embriologia , Suturas Cranianas/embriologia , Marcadores Genéticos , Meninges/embriologia , Mesoderma/citologia , Camundongos , Camundongos Transgênicos , Crista Neural/citologia , Osteogênese/efeitos dos fármacos , Osso Parietal/efeitos dos fármacos , Osso Parietal/embriologia , Proteínas Proto-Oncogênicas/genética , Tretinoína/farmacologia , Proteínas Wnt , Proteína Wnt1
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA