Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
J Exp Med ; 219(5)2022 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-35404389

RESUMO

Monocytes undergo phenotypic and functional changes in response to inflammatory cues, but the molecular signals that drive different monocyte states remain largely undefined. We show that monocytes acquire macrophage markers upon glomerulonephritis and may be derived from CCR2+CX3CR1+ double-positive monocytes, which are preferentially recruited, dwell within glomerular capillaries, and acquire proinflammatory characteristics in the nephritic kidney. Mechanistically, the transition to immature macrophages begins within the vasculature and relies on CCR2 in circulating cells and TNFR2 in parenchymal cells, findings that are recapitulated in vitro with monocytes cocultured with TNF-TNFR2-activated endothelial cells generating CCR2 ligands. Single-cell RNA sequencing of cocultures defines a CCR2-dependent monocyte differentiation path associated with the acquisition of immune effector functions and generation of CCR2 ligands. Immature macrophages are detected in the urine of lupus nephritis patients, and their frequency correlates with clinical disease. In conclusion, CCR2-dependent functional specialization of monocytes into macrophages begins within the TNF-TNFR2-activated vasculature and may establish a CCR2-based autocrine, feed-forward loop that amplifies renal inflammation.


Assuntos
Células Endoteliais , Monócitos , Receptores CCR2 , Receptores Tipo II do Fator de Necrose Tumoral , Humanos , Ligantes , Macrófagos , Receptores CCR2/genética , Receptores Tipo II do Fator de Necrose Tumoral/genética
2.
Nat Commun ; 12(1): 4791, 2021 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-34373452

RESUMO

Classical dendritic cells (cDC) are professional antigen-presenting cells (APC) that regulate immunity and tolerance. Neutrophil-derived cells with properties of DCs (nAPC) are observed in human diseases and after culture of neutrophils with cytokines. Here we show that FcγR-mediated endocytosis of antibody-antigen complexes or an anti-FcγRIIIB-antigen conjugate converts neutrophils into nAPCs that, in contrast to those generated with cytokines alone, activate T cells to levels observed with cDCs and elicit CD8+ T cell-dependent anti-tumor immunity in mice. Single cell transcript analyses and validation studies implicate the transcription factor PU.1 in neutrophil to nAPC conversion. In humans, blood nAPC frequency in lupus patients correlates with disease. Moreover, anti-FcγRIIIB-antigen conjugate treatment induces nAPCs that can activate autologous T cells when using neutrophils from individuals with myeloid neoplasms that harbor neoantigens or those vaccinated against bacterial toxins. Thus, anti-FcγRIIIB-antigen conjugate-induced conversion of neutrophils to immunogenic nAPCs may represent a possible immunotherapy for cancer and infectious diseases.


Assuntos
Antígenos de Neoplasias/imunologia , Neoplasias/imunologia , Neutrófilos/imunologia , Receptores de IgG/genética , Receptores de IgG/imunologia , Proteínas Adaptadoras de Transporte Vesicular/genética , Animais , Apresentação de Antígeno/imunologia , Complexo Antígeno-Anticorpo , Medula Óssea , Linfócitos T CD4-Positivos , Linfócitos T CD8-Positivos , Movimento Celular , Proliferação de Células , Citocinas/imunologia , Células Dendríticas/imunologia , Endocitose , Humanos , Imunidade Inata , Imunoterapia , Linfonodos/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fator 88 de Diferenciação Mieloide/genética , Espécies Reativas de Oxigênio , Transcriptoma
3.
Ann Rheum Dis ; 78(2): 228-237, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30459279

RESUMO

OBJECTIVE: Immune complexes (ICs) play a critical role in the pathology of autoimmune diseases. The aim of this study was to generate and characterise a first-in-class anti-FcγRIIA antibody (Ab) VIB9600 (previously known as MEDI9600) that blocks IgG immune complex-mediated cellular activation for clinical development. METHODS: VIB9600 was humanised and optimised from the IV.3 Ab. Binding affinity and specificity were determined by Biacore and ELISA. Confocal microscopy, Flow Cytometry-based assays and binding competition assays were used to assess the mode of action of the antibody. In vitro cell-based assays were used to demonstrate suppression of IC-mediated inflammatory responses. In vivo target suppression and efficacy was demonstrated in FcγRIIA-transgenic mice. Single-dose pharmacokinetic (PK)/pharmacodynamic study multiple dose Good Laboratory Practice (GLP) toxicity studies were conducted in non-human primates. RESULTS: We generated a humanised effector-deficient anti-FcγRIIA antibody (VIB9600) that potently blocks autoantibody and IC-mediated proinflammatory responses. VIB9600 suppresses FcγRIIA activation by blocking ligand engagement and by internalising FcγRIIA from the cell surface. VIB9600 inhibits IC-induced type I interferons from plasmacytoid dendritic cells (involved in SLE), antineutrophil cytoplasmic antibody (ANCA)-induced production of reactive oxygen species by neutrophils (involved in ANCA-associated vasculitis) and IC-induced tumour necrosis factor α and interleukin-6 production (involved in rheumatoid arthritis). In FcγRIIA transgenic mice, VIB9600 suppressed antiplatelet antibody-induced thrombocytopaenia, acute anti-GBM Ab-induced nephritis and anticollagen Ab-induced arthritis. VIB9600 also exhibited favourable PK and safety profiles in cynomolgus monkey studies. CONCLUSIONS: VIB9600 is a specific humanised antibody antagonist of FcγRIIA with null effector function that warrants further clinical development for the treatment of IC-mediated diseases.


Assuntos
Anticorpos Anti-Idiotípicos/farmacologia , Complexo Antígeno-Anticorpo/efeitos dos fármacos , Doenças Autoimunes/tratamento farmacológico , Fatores Imunológicos/farmacologia , Receptores de IgG/imunologia , Animais , Anticorpos Anticitoplasma de Neutrófilos/imunologia , Complexo Antígeno-Anticorpo/imunologia , Doenças Autoimunes/imunologia , Células Dendríticas/imunologia , Humanos , Imunoglobulina G/imunologia , Interleucina-6/imunologia , Macaca fascicularis , Camundongos , Camundongos Transgênicos , Neutrófilos/imunologia , Espécies Reativas de Oxigênio/imunologia , Fator de Necrose Tumoral alfa/imunologia
4.
Nat Med ; 24(2): 232-238, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29309057

RESUMO

Rhabdomyolysis is a serious syndrome caused by skeletal muscle injury and the subsequent release of breakdown products from damaged muscle cells into systemic circulation. The muscle damage most often results from strenuous exercise, muscle hypoxia, medications, or drug abuse and can lead to life-threatening complications, such as acute kidney injury (AKI). Rhabdomyolysis and the AKI complication can also occur during crush syndrome, an emergency condition that commonly occurs in victims of natural disasters, such as earthquakes, and man-made disasters, such as wars and terrorism. Myoglobin released from damaged muscle is believed to trigger renal dysfunction in this form of AKI. Recently, macrophages were implicated in the disease pathogenesis of rhabdomyolysis-induced AKI, but the precise molecular mechanism remains unclear. In the present study, we show that macrophages released extracellular traps (ETs) comprising DNA fibers and granule proteins in a mouse model of rhabdomyolysis. Heme-activated platelets released from necrotic muscle cells during rhabdomyolysis enhanced the production of macrophage extracellular traps (METs) through increasing intracellular reactive oxygen species generation and histone citrullination. Here we report, for the first time to our knowledge, this unanticipated role for METs and platelets as a sensor of myoglobin-derived heme in rhabdomyolysis-induced AKI. This previously unknown mechanism might be targeted for treatment of the disease. Finally, we found a new therapeutic tool for prevention of AKI after rhabdomyolysis, which might rescue some sufferers of this pathology.


Assuntos
Injúria Renal Aguda/genética , Síndrome de Esmagamento/genética , Ativação Plaquetária/genética , Rabdomiólise/genética , Injúria Renal Aguda/etiologia , Injúria Renal Aguda/patologia , Animais , Citrulinação/genética , Síndrome de Esmagamento/etiologia , Síndrome de Esmagamento/patologia , DNA/genética , DNA/metabolismo , Modelos Animais de Doenças , Armadilhas Extracelulares/genética , Armadilhas Extracelulares/metabolismo , Heme/metabolismo , Histonas/metabolismo , Humanos , Macrófagos/metabolismo , Macrófagos/patologia , Camundongos , Músculo Esquelético/lesões , Músculo Esquelético/patologia , Mioglobina/genética , Espécies Reativas de Oxigênio/metabolismo , Rabdomiólise/complicações , Rabdomiólise/patologia , Vesículas Secretórias/genética
5.
J Clin Invest ; 127(10): 3810-3826, 2017 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-28891817

RESUMO

The kidney glomerular capillaries are frequent sites of immune complex deposition and subsequent neutrophil accumulation in post-infectious and rapidly progressive glomerulonephritis. However, the mechanisms of neutrophil recruitment remain enigmatic, and there is no targeted therapeutic to avert this proximal event in glomerular inflammation. The uniquely human activating Fc receptor FcγRIIA promotes glomerular neutrophil accumulation and damage in anti-glomerular basement membrane-induced (anti-GBM-induced) glomerulonephritis when expressed on murine neutrophils. Here, we found that neutrophils are directly captured by immobilized IgG antibodies under physiological flow conditions in vitro through FcγRIIA-dependent, Abl/Src tyrosine kinase-mediated F-actin polymerization. Biophysical measurements showed that the lifetime of FcγRIIA-IgG bonds increased under mechanical force in an F-actin-dependent manner, which could enable the capture of neutrophils under physiological flow. Kidney intravital microscopy revealed that circulating neutrophils, which were similar in diameter to glomerular capillaries, abruptly arrested following anti-GBM antibody deposition via neutrophil FcγRIIA and Abl/Src kinases. Accordingly, inhibition of Abl/Src with bosutinib reduced FcγRIIA-mediated glomerular neutrophil accumulation and renal injury in experimental, crescentic anti-GBM nephritis. These data identify a pathway of neutrophil recruitment within glomerular capillaries following IgG deposition that may be targeted by bosutinib to avert glomerular injury.


Assuntos
Compostos de Anilina/farmacologia , Glomerulonefrite/imunologia , Imunoglobulina G/imunologia , Glomérulos Renais/imunologia , Neutrófilos/imunologia , Nitrilas/farmacologia , Quinolinas/farmacologia , Receptores de IgG/imunologia , Animais , Capilares/imunologia , Capilares/patologia , Glomerulonefrite/genética , Glomerulonefrite/patologia , Células HL-60 , Humanos , Glomérulos Renais/patologia , Camundongos , Camundongos Knockout , Neutrófilos/patologia , Proteínas Proto-Oncogênicas c-abl/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-abl/genética , Proteínas Proto-Oncogênicas c-abl/imunologia , Receptores de IgG/genética , Quinases da Família src/antagonistas & inibidores , Quinases da Família src/imunologia
6.
JCI Insight ; 2(10)2017 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-28515361

RESUMO

Though recent reports suggest that neutrophil extracellular traps (NETs) are a source of antigenic nucleic acids in systemic lupus erythematosus (SLE), we recently showed that inhibition of NETs by targeting the NADPH oxidase complex via cytochrome b-245, ß polypeptide (cybb) deletion exacerbated disease in the MRL.Faslpr lupus mouse model. While these data challenge the paradigm that NETs promote lupus, it is conceivable that global regulatory properties of cybb and cybb-independent NETs confound these findings. Furthermore, recent reports indicate that inhibitors of peptidyl arginine deiminase, type IV (Padi4), a distal mediator of NET formation, improve lupus in murine models. Here, to clarify the contribution of NETs to SLE, we employed a genetic approach to delete Padi4 in the MRL.Faslpr model and used a pharmacological approach to inhibit PADs in both the anti-glomerular basement membrane model of proliferative nephritis and a human-serum-transfer model of SLE. In contrast to prior inhibitor studies, we found that deletion of Padi4 did not ameliorate any aspect of nephritis, loss of tolerance, or immune activation. Pharmacological inhibition of PAD activity had no effect on end-organ damage in inducible models of glomerulonephritis. These data provide a direct challenge to the concept that NETs promote autoimmunity and target organ injury in SLE.

7.
Nat Commun ; 7: 10828, 2016 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-26940548

RESUMO

Acute peritonitis is a frequent medical condition that can trigger severe sepsis as a life-threatening complication. Neutrophils are first-responders in infection but recruitment mechanisms to the abdominal cavity remain poorly defined. Here, we demonstrate that high endothelial venules (HEVs) of the greater omentum constitute a main entry pathway in TNFα-, Escherichia coli (E. coli)- and caecal ligation and puncture-induced models of inflammation. Neutrophil transmigration across HEVs is faster than across conventional postcapillary venules and requires a unique set of adhesion receptors including peripheral node addressin, E-, L-selectin and Mac-1 but not P-selectin or LFA-1. Omental milky spots readily concentrate intra-abdominal E. coli where macrophages and recruited neutrophils collaborate in phagocytosis and killing. Inhibition of the omental neutrophil response exacerbates septic progression of peritonitis. This data identifies HEVs as a clinically relevant vascular recruitment site for neutrophils in acute peritonitis that is indispensable for host defence against early systemic bacterial spread and sepsis.


Assuntos
Neutrófilos/fisiologia , Omento/irrigação sanguínea , Peritonite/imunologia , Sepse/imunologia , Vênulas/fisiologia , Animais , Antígenos Ly/genética , Antígenos Ly/metabolismo , Moléculas de Adesão Celular/genética , Moléculas de Adesão Celular/metabolismo , Escherichia coli , Infecções por Escherichia coli/imunologia , Feminino , Regulação da Expressão Gênica , Genes Transgênicos Suicidas , Masculino , Camundongos , Camundongos Knockout , Fator de Necrose Tumoral alfa/metabolismo
8.
J Am Soc Nephrol ; 26(12): 3102-13, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25855773

RESUMO

Progress in long-term renal allograft survival continues to lag behind the progress in short-term transplant outcomes. Dendritic cells are the most efficient antigen-presenting cells, but surprisingly little attention has been paid to their presence in transplanted kidneys. We used dendritic cell-specific intercellular adhesion molecule-3-grabbing nonintegrin as a marker of dendritic cells in 105 allograft biopsy samples from 105 kidney transplant recipients. High dendritic cell density was associated with poor allograft survival independent of clinical variables. Moreover, high dendritic cell density correlated with greater T cell proliferation and poor outcomes in patients with high total inflammation scores, including inflammation in areas of tubular atrophy. We then explored the association between dendritic cells and histologic variables associated with poor prognosis. Multivariate analysis revealed an independent association between the densities of dendritic cells and T cells. In biopsy samples with high dendritic cell density, electron microscopy showed direct physical contact between infiltrating lymphocytes and cells that have the ultrastructural morphologic characteristics of dendritic cells. The origin of graft dendritic cells was sought in nine sex-mismatched recipients using XY fluorescence in situ hybridization. Whereas donor dendritic cells predominated initially, the majority of dendritic cells in late allograft biopsy samples were of recipient origin. Our data highlight the prognostic value of dendritic cell density in allograft biopsy samples, suggest a new role for these cells in shaping graft inflammation, and provide a rationale for targeting dendritic cell recruitment to promote long-term allograft survival.


Assuntos
Aloenxertos/patologia , Moléculas de Adesão Celular/análise , Células Dendríticas/química , Sobrevivência de Enxerto , Transplante de Rim , Rim/patologia , Lectinas Tipo C/análise , Receptores de Superfície Celular/análise , Adulto , Aloenxertos/imunologia , Biópsia , Células Dendríticas/patologia , Células Dendríticas/ultraestrutura , Feminino , Sobrevivência de Enxerto/imunologia , Humanos , Rim/imunologia , Masculino , Microscopia Eletrônica , Pessoa de Meia-Idade , Nefrite/patologia , Valor Preditivo dos Testes , Linfócitos T/patologia , Linfócitos T/ultraestrutura
9.
Kidney Int ; 87(2): 281-96, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25140911

RESUMO

Tumor necrosis factor (TNF), initially reported to induce tumor cell apoptosis and cachexia, is now considered a central mediator of a broad range of biological activities from cell proliferation, cell death and differentiation to induction of inflammation and immune modulation. TNF exerts its biological responses via interaction with two cell surface receptors: TNFR1 and TNFR2. (TNFRs). These receptors trigger shared and distinct signaling pathways upon TNF binding, which in turn result in cellular outputs that may promote tissue injury on one hand but may also induce protective, beneficial responses. Yet the role of TNF and its receptors specifically in renal disease is still not well understood. This review describes the expression of the TNFRs, the signaling pathways induced by them and the biological responses of TNF and its receptors in various animal models of renal diseases, and discusses the current outcomes from use of TNF biologics and TNF biomarkers in renal disorders.


Assuntos
Nefropatias/etiologia , Nefropatias/metabolismo , Receptores do Fator de Necrose Tumoral/metabolismo , Injúria Renal Aguda/etiologia , Injúria Renal Aguda/metabolismo , Animais , Carcinoma de Células Renais/etiologia , Carcinoma de Células Renais/metabolismo , Nefropatias Diabéticas/etiologia , Nefropatias Diabéticas/metabolismo , Rejeição de Enxerto/etiologia , Rejeição de Enxerto/metabolismo , Humanos , Nefropatias/terapia , Neoplasias Renais/etiologia , Neoplasias Renais/metabolismo , Transplante de Rim/efeitos adversos , Modelos Biológicos , Nefrite/etiologia , Nefrite/metabolismo , Receptores do Fator de Necrose Tumoral/antagonistas & inibidores , Transdução de Sinais , Fator de Necrose Tumoral alfa/antagonistas & inibidores , Fator de Necrose Tumoral alfa/metabolismo , Obstrução Ureteral/complicações , Obstrução Ureteral/metabolismo
10.
Immunity ; 38(5): 1025-37, 2013 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-23623383

RESUMO

Endothelial-dependent mechanisms of mononuclear cell influx are not well understood. We showed that acute stimulation of murine microvascular endothelial cells expressing the tumor necrosis factor receptors TNFR1 and TNFR2 with the soluble cytokine TNF led to CXCR3 chemokine generation. The TNF receptors signaled through interferon regulatory factor-1 (IRF1) to induce interferon-ß (IFN-ß) and subsequent autocrine signaling via the type I IFN receptor and the transcription factor STAT1. Both TNFR2 and TNFR1 were required for IRF1-IFNß signaling and, in human endothelial cells TNFR2 expression alone induced IFN-ß signaling and monocyte recruitment. In vivo, TNFR1 was required for acute renal neutrophil and monocyte influx after systemic TNF treatment, whereas the TNFR2-IRF1-IFN-ß autocrine loop was essential only for macrophage accumulation. In a chronic model of proliferative nephritis, IRF1 and renal-expressed TNFR2 were essential for sustained macrophage accumulation. Thus, our data identify a pathway in endothelial cells that selectively recruits monocytes during a TNF-induced inflammatory response.


Assuntos
Fator Regulador 1 de Interferon/metabolismo , Interferon beta/metabolismo , Monócitos/imunologia , Receptores Tipo II do Fator de Necrose Tumoral/metabolismo , Fator de Necrose Tumoral alfa/imunologia , Animais , Comunicação Autócrina/imunologia , Células Cultivadas , Células Endoteliais/metabolismo , Humanos , Inflamação/imunologia , Fator Regulador 1 de Interferon/genética , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Monócitos/metabolismo , Nefrite/metabolismo , Neutrófilos/metabolismo , Receptor de Interferon alfa e beta/metabolismo , Receptores CXCR3/biossíntese , Receptores Tipo I de Fatores de Necrose Tumoral/biossíntese , Receptores Tipo II do Fator de Necrose Tumoral/biossíntese , Fator de Transcrição STAT1/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
11.
Glia ; 60(6): 993-1003, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22438044

RESUMO

Complement components and their receptors are found within and around amyloid ß (Aß) cerebral plaques in Alzheimer's disease (AD). Microglia defend against pathogens through phagocytosis via complement component C3 and/or engagement of C3 cleavage product iC3b with complement receptor type 3 (CR3, Mac-1). Here, we provide direct evidence that C3 and Mac-1 mediate, in part, phagocytosis and clearance of fibrillar amyloid-ß (fAß) by murine microglia in vitro and in vivo. Microglia took up not only synthetic fAß(42) but also amyloid cores from patients with AD, transporting them to lysosomes in vitro. Fibrillar Aß(42) uptake was significantly attenuated by the deficiency or knockdown of C3 or Mac-1 and scavenger receptor class A ligands. In addition, C3 or Mac-1 knockdown combined with a scavenger receptor ligand, fucoidan, further attenuated fibrillar Aß(42) uptake by N9 microglia. Fluorescent fibrillar Aß(42) microinjected cortically was significantly higher in C3 and Mac-1 knockout mice compared with wild-type mice 5 days after surgery, indicating reduced clearance in vivo. Together, these results demonstrate that C3 and Mac-1 are involved in phagocytosis and clearance of fAß by microglia, providing support for a potential beneficial role for microglia and the complement system in AD pathogenesis. © 2012 Wiley Periodicals, Inc.


Assuntos
Amiloide/metabolismo , Encéfalo/citologia , Complemento C3c/metabolismo , Antígeno de Macrófago 1/metabolismo , Microglia/fisiologia , Fagocitose/fisiologia , Peptídeos beta-Amiloides/metabolismo , Peptídeos beta-Amiloides/farmacologia , Análise de Variância , Animais , Encéfalo/efeitos dos fármacos , Linhagem Celular Transformada , Complemento C3c/deficiência , Citocinas/metabolismo , Relação Dose-Resposta a Droga , Ensaio de Imunoadsorção Enzimática , Feminino , Humanos , Ligantes , Proteínas de Membrana Lisossomal/metabolismo , Lisossomos/metabolismo , Antígeno de Macrófago 1/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microglia/efeitos dos fármacos , Microinjeções , Fragmentos de Peptídeos/metabolismo , Fragmentos de Peptídeos/farmacologia , Fagocitose/efeitos dos fármacos , Fagocitose/genética , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Receptores Depuradores Classe A/metabolismo , Fatores de Tempo , Transfecção/métodos
12.
J Am Soc Nephrol ; 23(3): 507-15, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22266663

RESUMO

Levels of proinflammatory cytokines associate with risk for developing type 2 diabetes but whether chronic inflammation contributes to the development of diabetic complications, such as ESRD, is unknown. In the 1990s, we recruited 410 patients with type 2 diabetes for studies of diabetic nephropathy and recorded their characteristics at enrollment. During 12 years of follow-up, 59 patients developed ESRD (17 per 1000 patient-years) and 84 patients died without ESRD (24 per 1000 patient-years). Plasma markers of systemic inflammation, endothelial dysfunction, and the TNF pathway were measured in the study entry samples. Of the examined markers, only TNF receptors 1 and 2 (TNFR1 and TNFR2) associated with risk for ESRD. These two markers were highly correlated, but ESRD associated more strongly with TNFR1. The cumulative incidence of ESRD for patients in the highest TNFR1 quartile was 54% after 12 years but only 3% for the other quartiles (P<0.001). In Cox proportional hazard analyses, TNFR1 predicted risk for ESRD even after adjustment for clinical covariates such as urinary albumin excretion. Plasma concentration of TNFR1 outperformed all tested clinical variables with regard to predicting ESRD. Concentrations of TNFRs moderately associated with death unrelated to ESRD. In conclusion, elevated concentrations of circulating TNFRs in patients with type 2 diabetes at baseline are very strong predictors of the subsequent progression to ESRD in subjects with and without proteinuria.


Assuntos
Diabetes Mellitus Tipo 2/complicações , Nefropatias Diabéticas/epidemiologia , Nefropatias Diabéticas/etiologia , Falência Renal Crônica/epidemiologia , Falência Renal Crônica/etiologia , Receptores Tipo II do Fator de Necrose Tumoral/sangue , Receptores Tipo I de Fatores de Necrose Tumoral/sangue , Adulto , Idoso , Biomarcadores/sangue , Estudos de Coortes , Nefropatias Diabéticas/fisiopatologia , Progressão da Doença , Feminino , Seguimentos , Humanos , Incidência , Falência Renal Crônica/fisiopatologia , Masculino , Pessoa de Meia-Idade , Valor Preditivo dos Testes , Modelos de Riscos Proporcionais , Estudos Retrospectivos , Fatores de Risco , Transdução de Sinais/fisiologia , Taxa de Sobrevida
13.
J Am Soc Nephrol ; 23(3): 516-24, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22266664

RESUMO

Elevated plasma concentrations of TNF receptors 1 and 2 (TNFR1 and TNFR2) predict development of ESRD in patients with type 2 diabetes without proteinuria, suggesting these markers may contribute to the pathogenesis of renal decline. We investigated whether circulating markers of the TNF pathway determine GFR loss among patients with type 1 diabetes. We followed two cohorts comprising 628 patients with type 1 diabetes, normal renal function, and no proteinuria. Over 12 years, 69 patients developed estimated GFR less than 60 mL/min per 1.73 m(2) (16 per 1000 person-years). Concentrations of TNFR1 and TNFR2 were strongly associated with risk for early renal decline. Renal decline was associated only modestly with total TNFα concentration and appeared unrelated to free TNFα. The cumulative incidence of estimated GFR less than 60 mL/min per 1.73 m(2) for patients in the highest TNFR2 quartile was 60% after 12 years compared with 5%-19% in the remaining quartiles. In Cox proportional hazards analysis, patients with TNFR2 values in the highest quartile were threefold more likely to experience renal decline than patients in the other quartiles (hazard ratio, 3.0; 95% confidence interval, 1.7-5.5). The risk associated with high TNFR1 values was slightly less than that associated with high TNFR2 values. TNFR levels were unrelated to baseline free TNFα level and remained stable over long periods within an individual. In conclusion, early GFR loss in patients with type 1 diabetes without proteinuria is strongly associated with circulating TNF receptor levels but not TNFα levels (free or total).


Assuntos
Diabetes Mellitus Tipo 1/complicações , Nefropatias/epidemiologia , Nefropatias/etiologia , Falência Renal Crônica/epidemiologia , Falência Renal Crônica/etiologia , Receptores Tipo II do Fator de Necrose Tumoral/sangue , Receptores Tipo I de Fatores de Necrose Tumoral/sangue , Adulto , Biomarcadores/sangue , Doença Crônica , Estudos de Coortes , Feminino , Seguimentos , Taxa de Filtração Glomerular/fisiologia , Humanos , Rim/fisiopatologia , Nefropatias/fisiopatologia , Falência Renal Crônica/fisiopatologia , Masculino , Pessoa de Meia-Idade , Análise Multivariada , Valor Preditivo dos Testes , Modelos de Riscos Proporcionais , Estudos Retrospectivos , Fatores de Risco , Índice de Gravidade de Doença , Transdução de Sinais/fisiologia
14.
Methods Mol Biol ; 757: 369-97, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-21909923

RESUMO

Integrins are adhesive proteins that have evolved to mediate cell-cell and cell-matrix communication that is indispensable for development and postnatal physiology. Despite their widespread expression, the genetic deletion of specific integrin family members in lower organisms as well as mammals leads to relatively distinct abnormalities. Many of the processes in which integrins participate have a requirement for strong adhesion coincident with times of mechanical stress. In Drosophila, the absence of specific integrins leads to detachment of muscle from the gut and body wall and separation of the two epithelial layers in the wing. In mice and humans, a deletion of either subunit of the laminin-binding integrin, α6ß4 leads to severe skin blistering and defects in other epithelial layers. In addition, integrins have also evolved to serve more subspecialized roles ranging from the establishment of a stem cell niche in Drosophila and mammals, to the regulation of pathogenic tumor vascularization, platelet adhesion, and leukocyte transmigration in mammalian systems. However, some cells seem to function normally in the absence of all integrins, as revealed by the very surprising finding that deletion of all the major integrin types on dendritic cells of mice has no effect on the ability of these cells to migrate within the interstitium of the skin and enter into lymphatics. In addition to serving as transmembrane mechanical links, integrins in vertebrates synergize with a number of receptors including growth factor receptors, to enhance responses. This leads to the activation of a large signaling network that affects cell proliferation and differentiation, as well as cell shape and migration. In vivo studies, in lower organisms, knockout mouse models as well as in inherited human diseases together have provided important insights into how this major, primordial family of adhesion receptors have remained true to their name "integrins" as their diverse functions have in common the ability to integrate extracellular stimuli into intracellular signals that affect cell behavior.


Assuntos
Integrinas/genética , Integrinas/metabolismo , Animais , Humanos , Integrinas/deficiência , Síndrome da Aderência Leucocítica Deficitária/genética , Síndrome da Aderência Leucocítica Deficitária/metabolismo , Transdução de Sinais , Trombastenia/genética , Trombastenia/metabolismo
15.
Cell Host Microbe ; 10(6): 603-15, 2011 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-22177564

RESUMO

Resistance to fungal infections is attributed to engagement of host pattern-recognition receptors, notably the ß-glucan receptor Dectin-1 and the integrin Mac-1, which induce phagocytosis and antifungal immunity. However, the mechanisms by which these receptors coordinate fungal clearance are unknown. We show that upon ligand binding, Dectin-1 activates Mac-1 to also recognize fungal components, and this stepwise process is critical for neutrophil cytotoxic responses. Both Mac-1 activation and Dectin-1- and Mac-1-induced neutrophil effector functions require Vav1 and Vav3, exchange factors for RhoGTPases. Mac-1- or Vav1,3-deficient mice have increased susceptibility to systemic candidiasis that is not due to impaired neutrophil recruitment but defective intracellular killing of C. albicans yeast forms, and Mac-1 or Vav1,3 reconstitution in hematopoietic cells restores resistance. Our results demonstrate that antifungal immunity depends on Dectin-1-induced activation of Mac-1 functions that is coordinated by Vav proteins, a pathway that may localize cytotoxic responses of circulating neutrophils to infected tissues.


Assuntos
Candida albicans/imunologia , Candidíase/imunologia , Lectinas Tipo C/imunologia , Antígeno de Macrófago 1/imunologia , Neutrófilos/imunologia , Proteínas Proto-Oncogênicas c-vav/imunologia , Receptores Imunológicos/imunologia , Animais , Candida albicans/fisiologia , Candidíase/genética , Candidíase/microbiologia , Feminino , Humanos , Lectinas Tipo C/genética , Antígeno de Macrófago 1/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neutrófilos/microbiologia , Fagocitose , Proteínas Proto-Oncogênicas c-vav/genética , Receptores Imunológicos/genética , Transdução de Sinais
16.
Arthritis Rheum ; 63(2): 467-78, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21280001

RESUMO

OBJECTIVE: Rheumatoid arthritis culminates in joint destruction that, in mouse models of disease, is supported by innate immune molecules, including Fcγ receptors (FcγR) and complement. However, these findings may not be predictive of the outcome in humans, given the structural differences between murine and human activating FcγR on neutrophils, a prominent component of joint exudates. The aim of this study was to examine the role of human neutrophil FcγRIIa in the development of arthritis and probe the underlying mechanism by which FcγRIIa initiates disease. METHODS: K/BxN mouse serum transfer-induced arthritis was examined in mice expressing human FcγRIIa on neutrophils but lacking their own activating FcγR (γ-chain-deficient mice). The role of mast cells, complement (C3 and C5a), and CD18 integrins in FcγRIIa-initiated disease was examined using cell reconstitution approaches, inhibitors, and functional blocking antibodies, respectively. Crosstalk between the complement receptor C5aR and FcγRIIa on neutrophils was evaluated in vitro. RESULTS: The expression of human FcγRIIa on neutrophils was sufficient to restore susceptibility to K/BxN serum-induced neutrophil recruitment, synovitis, and bone destruction in γ-chain-deficient mice. Joint inflammation was robust and proceeded even in the absence of mast cells and vascular permeability, features shown to contribute to disease in wild-type mice. Neutrophil recruitment was dependent on the presence of a CD18 integrin, lymphocyte function-associated antigen 1, and C5aR. In addition, C5aR significantly enhanced FcγRIIa-mediated phagocytosis and oxidative burst in vitro. CONCLUSION: Human and murine activating FcγR on neutrophils are not functionally equivalent, and in humans, they may play a primary role in arthritis. Crosstalk between neutrophil C5aR and FcγRIIa is essential for disease progression, thus highlighting a new aspect of complement during the effector phase of inflammatory arthritis.


Assuntos
Artrite Experimental/imunologia , Neutrófilos/imunologia , Receptor da Anafilatoxina C5a/imunologia , Receptores de IgG/imunologia , Transferência Adotiva , Animais , Artrite Experimental/metabolismo , Transplante de Medula Óssea , Modelos Animais de Doenças , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Infiltração de Neutrófilos , Neutrófilos/metabolismo , Fagocitose/imunologia , Receptor Cross-Talk/imunologia , Receptor da Anafilatoxina C5a/metabolismo , Receptores de IgG/metabolismo , Especificidade da Espécie , Sinovite/imunologia , Sinovite/metabolismo
17.
Kidney Int ; 76(3): 262-76, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19436333

RESUMO

Tumor necrosis factor alpha (TNFalpha), a pleiotropic cytokine, plays important inflammatory roles in renal diseases such as lupus nephritis, anti-neutrophil cytoplasmic antibody (ANCA)-associated glomerulonephritis and renal allograft rejection. However, TNFalpha also plays critical immunoregulatory roles that are required to maintain immune homeostasis. These complex biological functions of TNFalpha are orchestrated by its two receptors, TNFR1 and TNFR2. For example, TNFR2 promotes leukocyte infiltration and tissue injury in an animal model of immune complex-mediated glomerulonephritis. On the other hand, TNFR1 plays an immunoregulatory function in a murine lupus model with a deficiency in this receptor that leads to more severe autoimmune symptoms. In humans, proinflammatory and immunoregulatory roles for TNFalpha are strikingly illustrated in patients on anti-TNFalpha medications: These treatments are greatly beneficial in certain inflammatory diseases such as rheumatoid arthritis but, on the other hand, are also associated with the induction of autoimmune lupus-like syndromes and enhanced autoimmunity in multiple sclerosis patients. The indication for anti-TNFalpha treatments in renal inflammatory diseases is still under discussion. Ongoing clinical trials may help to clarify the potential benefit of such treatments in lupus nephritis and ANCA-associated glomerulonephritis. Overall, the complex biology of TNFalpha is not fully understood. A greater understanding of the function of its receptors may provide a framework to understand its contrasting proinflammatory and immunoregulatory functions. This may lead the development of new, more specific anti-inflammatory drugs.


Assuntos
Nefrite/imunologia , Fator de Necrose Tumoral alfa/fisiologia , Animais , Humanos , Nefrite/tratamento farmacológico , Receptores Tipo I de Fatores de Necrose Tumoral/fisiologia , Receptores Tipo II do Fator de Necrose Tumoral/fisiologia , Transdução de Sinais , Fator de Necrose Tumoral alfa/antagonistas & inibidores
18.
Am J Physiol Renal Physiol ; 296(4): F867-74, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19158348

RESUMO

Viral RNA or bacterial products can activate glomerular mesangial cells via a subset of Toll-like receptors (Tlr). Because Tlr2-deficient mice were recently found to have attenuated nephrotoxic serum nephritis (NSN), we hypothesized that endogenous Tlr agonists can activate glomerular mesangial cells. Primary mesangial cells from C57BL/6 mice expressed Tlr1-6 and Tlr11 mRNA at considerable levels and produced Il-6 when being exposed to the respective Tlr ligands. Exposure to necrotic cells activated cultured primary mesangial cells to produce Il-6 in a Tlr2/Myd88-dependent manner. Apoptotic cells activated cultured mesangial cells only when being enriched to high numbers. Apoptotic cell-induced Il-6 release was Myd88 dependent, and only purified apoptotic cell RNA induced Trif signaling in mesangial cells. Does Trif signaling contribute to disease activity in glomerulonephritis? To answer this question, we induced autologous NSN by injection of NS raised in rabbits in Trif-mutant and wild-type mice. Lack of Trif did not alter the functional and histomorphological abnormalities of NSN, including the evolution of anti-rabbit IgG and anti-rabbit-specific nephritogenic T cells. We therefore conclude that apoptotic cell RNA is a poor activator of Trif signaling in mesangial cells and that necrotic cells' releases rather activate mesangial cells via the Tlr2/Myd88 signaling pathway.


Assuntos
Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Apoptose , Glomerulonefrite/metabolismo , Doenças do Complexo Imune/metabolismo , Células Mesangiais/metabolismo , Fator 88 de Diferenciação Mieloide/metabolismo , Transdução de Sinais , Receptor 2 Toll-Like/metabolismo , Receptor 3 Toll-Like/metabolismo , Proteínas Adaptadoras de Transporte Vesicular/deficiência , Proteínas Adaptadoras de Transporte Vesicular/genética , Animais , Formação de Anticorpos , Complexo Antígeno-Anticorpo/metabolismo , Células Cultivadas , Quimiocina CXCL9/metabolismo , Glomerulonefrite/imunologia , Glomerulonefrite/patologia , Doenças do Complexo Imune/imunologia , Doenças do Complexo Imune/patologia , Imunidade Celular , Interferon gama/metabolismo , Interleucina-6/metabolismo , Células Mesangiais/imunologia , Células Mesangiais/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mutação , Fator 88 de Diferenciação Mieloide/deficiência , Fator 88 de Diferenciação Mieloide/genética , Necrose , Síndrome Nefrótica/metabolismo , Síndrome Nefrótica/patologia , RNA/metabolismo , Coelhos , Receptor 2 Toll-Like/deficiência , Receptor 2 Toll-Like/genética
19.
Blood ; 112(7): 2770-9, 2008 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-18641366

RESUMO

Vascular endothelial-cadherin (VE-cad) is localized to adherens junctions at endothelial cell borders and forms a complex with alpha-, beta-, gamma-, and p120-catenins (p120). We previously showed that the VE-cad complex disassociates to form short-lived "gaps" during leukocyte transendothelial migration (TEM); however, whether these gaps are required for leukocyte TEM is not clear. Recently p120 has been shown to control VE-cad surface expression through endocytosis. We hypothesized that p120 regulates VE-cad surface expression, which would in turn have functional consequences for leukocyte transmigration. Here we show that endothelial cells transduced with an adenovirus expressing p120GFP fusion protein significantly increase VE-cad expression. Moreover, endothelial junctions with high p120GFP expression largely prevent VE-cad gap formation and neutrophil leukocyte TEM; if TEM occurs, the length of time required is prolonged. We find no evidence that VE-cad endocytosis plays a role in VE-cad gap formation and instead show that this process is regulated by changes in VE-cad phosphorylation. In fact, a nonphosphorylatable VE-cad mutant prevented TEM. In summary, our studies provide compelling evidence that VE-cad gap formation is required for leukocyte transmigration and identify p120 as a critical intracellular mediator of this process through its regulation of VE-cad expression at junctions.


Assuntos
Antígenos CD/metabolismo , Caderinas/metabolismo , Moléculas de Adesão Celular/metabolismo , Quimiotaxia de Leucócito , Leucócitos/citologia , Leucócitos/metabolismo , Fosfoproteínas/metabolismo , Cateninas , Células Cultivadas , Endocitose , Células Endoteliais/citologia , Células Endoteliais/metabolismo , Endotélio/metabolismo , Junções Comunicantes/metabolismo , Proteínas de Fluorescência Verde/metabolismo , Meia-Vida , Humanos , Fosforilação , Ligação Proteica , Transporte Proteico , Proteínas Recombinantes de Fusão/metabolismo , delta Catenina
20.
J Immunol ; 180(9): 6279-87, 2008 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-18424751

RESUMO

The signals linking neutrophil opsonic receptors, FcgammaRs and complement receptor 3 (Mac-1) to cellular cytotoxic responses are poorly understood. Furthermore, because a deficiency in activating FcgammaRs reduces both IgG-mediated neutrophil recruitment and tissue injury, the role of FcgammaRs specifically in mediating neutrophil cytotoxicity in vivo remains unclear. In this study, we demonstrate that neutrophil Vav 1 and 3, guanine exchange factors for Rac GTPases, are required for IgG/FcgammaR-mediated hemorrhage and edema in the reverse passive Arthus in the lung and skin. Rac GTPases are also required for development of the reverse passive Arthus reaction. A deficiency in Vav 1 and 3 does not affect neutrophil accumulation at the site of immune complex deposition, thus uncoupling neutrophil recruitment and tissue injury. Surprisingly, Vav and Rac proteins are dispensable for the development of the local Shwartzman reaction in vivo and phagocytosis of complement-opsonized RBC in vitro, processes strictly dependent on Mac-1 and complement C3. Thus, FcgammaR signaling through the Vav and Rac proteins in neutrophils is critical for stimulating immune complex disease while Vav- and Rac-independent pathways promote Mac-1/complement C3-dependent functions.


Assuntos
Complemento C3/imunologia , Imunoglobulina G/imunologia , Infiltração de Neutrófilos/imunologia , Neutrófilos/imunologia , Proteínas Proto-Oncogênicas c-vav/imunologia , Transdução de Sinais/imunologia , Animais , Complexo Antígeno-Anticorpo/imunologia , Reação de Arthus/genética , Reação de Arthus/imunologia , Complemento C3/genética , Edema/genética , Edema/imunologia , Hemorragia/genética , Hemorragia/imunologia , Imunoglobulina G/genética , Pulmão/imunologia , Antígeno de Macrófago 1/genética , Antígeno de Macrófago 1/imunologia , Camundongos , Camundongos Knockout , Infiltração de Neutrófilos/genética , Fagocitose/imunologia , Proteínas Proto-Oncogênicas c-vav/genética , Receptores de IgG/genética , Receptores de IgG/imunologia , Fenômeno de Shwartzman/genética , Fenômeno de Shwartzman/imunologia , Pele/imunologia , Proteínas rac de Ligação ao GTP/genética , Proteínas rac de Ligação ao GTP/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA