Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Mol Oncol ; 18(1): 156-169, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37854018

RESUMO

Breast cancer (BCa) is a highly heterogeneous disease, with hormone receptor status being a key factor in patient prognostication and treatment decision-making. The majority of primary tumours are positive for oestrogen receptor alpha (ERα), which plays a key role in tumorigenesis and disease progression, and represents the major target for treatment of BCa. However, around one-third of patients with ERα-positive BCa relapse and progress into the metastatic stage, with 20% of metastatic cases characterised by loss of ERα expression after endocrine treatment, known as ERα-conversion. It remains unclear whether ERα-converted cancers are biologically similar to bona fide ERα-negative disease and which signalling cascades compensate for ERα loss and drive tumour progression. To better understand the biological changes that occur in metastatic BCa upon ERα loss, we performed (phospho)proteomics analysis of 47 malignant pleural effusions derived from 37 BCa patients, comparing ERα-positive, ERα-converted and ERα-negative cases. Our data revealed that the loss of ERα-dependency in this metastatic site leads to only a partial switch to an ERα-negative molecular phenotype, with preservation of a luminal-like proteomic landscape. Furthermore, we found evidence for decreased activity of several key kinases, including serum/glucocorticoid regulated kinase 1 (SGK1), in ERα-converted metastases. Loss of SGK1 substrate phosphorylation may compensate for the loss of ERα-dependency in advanced disease and exposes a potential therapeutic vulnerability that may be exploited in treating these patients.


Assuntos
Neoplasias da Mama , Derrame Pleural Maligno , Feminino , Humanos , Neoplasias da Mama/patologia , Receptor alfa de Estrogênio/metabolismo , Glucocorticoides/uso terapêutico , Proteômica
2.
EMBO Mol Med ; 15(12): e17737, 2023 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-37902007

RESUMO

Glucocorticoid receptor (GR) is a transcription factor that plays a crucial role in cancer biology. In this study, we utilized an in silico-designed GR activity signature to demonstrate that GR relates to the proliferative capacity of numerous primary cancer types. In breast cancer, the GR activity status determines luminal subtype identity and has implications for patient outcomes. We reveal that GR engages with estrogen receptor (ER), leading to redistribution of ER on the chromatin. Notably, GR activation leads to upregulation of the ZBTB16 gene, encoding for a transcriptional repressor, which controls growth in ER-positive breast cancer and associates with prognosis in luminal A patients. In relation to ZBTB16's repressive nature, GR activation leads to epigenetic remodeling and loss of histone acetylation at sites proximal to cancer-driving genes. Based on these findings, epigenetic inhibitors reduce viability of ER-positive breast cancer cells that display absence of GR activity. Our findings provide insights into how GR controls ER-positive breast cancer growth and may have implications for patients' prognostication and provide novel therapeutic candidates for breast cancer treatment.


Assuntos
Neoplasias da Mama , Feminino , Humanos , Neoplasias da Mama/genética , Neoplasias da Mama/tratamento farmacológico , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Receptores de Estrogênio/genética , Receptores de Estrogênio/metabolismo , Receptores de Glucocorticoides/genética , Receptores de Glucocorticoides/metabolismo
3.
bioRxiv ; 2023 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-37333335

RESUMO

The crosstalk between prostate cancer (PCa) cells and the tumor microenvironment plays a pivotal role in disease progression and metastasis and could provide novel opportunities for patient treatment. Macrophages are the most abundant immune cells in the prostate tumor microenvironment (TME) and are capable of killing tumor cells. To identify genes in the tumor cells that are critical for macrophage-mediated killing, we performed a genome-wide co-culture CRISPR screen and identified AR, PRKCD, and multiple components of the NF-κB pathway as hits, whose expression in the tumor cell are essential for being targeted and killed by macrophages. These data position AR signaling as an immunomodulator, and confirmed by androgen-deprivation experiments, that rendered hormone-deprived tumor cells resistant to macrophage-mediated killing. Proteomic analyses showed a downregulation of oxidative phosphorylation in the PRKCD- and IKBKG-KO cells compared to the control, suggesting impaired mitochondrial function, which was confirmed by electron microscopy analyses. Furthermore, phosphoproteomic analyses revealed that all hits impaired ferroptosis signaling, which was validated transcriptionally using samples from a neoadjuvant clinical trial with the AR-inhibitor enzalutamide. Collectively, our data demonstrate that AR functions together with the PRKCD and the NF-κB pathway to evade macrophage-mediated killing. As hormonal intervention represents the mainstay therapy for treatment of prostate cancer patients, our findings may have direct implications and provide a plausible explanation for the clinically observed persistence of tumor cells despite androgen deprivation therapy.

4.
Nucleic Acids Res ; 51(18): 9576-9593, 2023 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-37070193

RESUMO

How steroid hormone receptors (SHRs) regulate transcriptional activity remains partly understood. Upon activation, SHRs bind the genome together with a co-regulator repertoire, crucial to induce gene expression. However, it remains unknown which components of the SHR-recruited co-regulator complex are essential to drive transcription following hormonal stimuli. Through a FACS-based genome-wide CRISPR screen, we functionally dissected the Glucocorticoid Receptor (GR) complex. We describe a functional cross-talk between PAXIP1 and the cohesin subunit STAG2, critical for regulation of gene expression by GR. Without altering the GR cistrome, PAXIP1 and STAG2 depletion alter the GR transcriptome, by impairing the recruitment of 3D-genome organization proteins to the GR complex. Importantly, we demonstrate that PAXIP1 is required for stability of cohesin on chromatin, its localization to GR-occupied sites, and maintenance of enhancer-promoter interactions. In lung cancer, where GR acts as tumor suppressor, PAXIP1/STAG2 loss enhances GR-mediated tumor suppressor activity by modifying local chromatin interactions. All together, we introduce PAXIP1 and STAG2 as novel co-regulators of GR, required to maintain 3D-genome architecture and drive the GR transcriptional programme following hormonal stimuli.

5.
NPJ Breast Cancer ; 8(1): 60, 2022 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-35523804

RESUMO

When locally advanced breast cancer is treated with neoadjuvant chemotherapy, the recurrence risk is significantly higher if no complete pathologic response is achieved. Identification of the underlying resistance mechanisms is essential to select treatments with maximal efficacy and minimal toxicity. Here we employed gene expression profiles derived from 317 HER2-negative treatment-naïve breast cancer biopsies of patients who underwent neoadjuvant chemotherapy, deep whole exome, and RNA-sequencing profiles of 22 matched pre- and post-treatment tumors, and treatment outcome data to identify biomarkers of response and resistance mechanisms. Molecular profiling of treatment-naïve breast cancer samples revealed that expression levels of proliferation, immune response, and extracellular matrix (ECM) organization combined predict response to chemotherapy. Triple negative patients with high proliferation, high immune response and low ECM expression had a significantly better treatment response and survival benefit (HR 0.29, 95% CI 0.10-0.85; p = 0.02), while in ER+ patients the opposite was seen (HR 4.73, 95% CI 1.51-14.8; p = 0.008). The characterization of paired pre-and post-treatment samples revealed that aberrations of known cancer genes were either only present in the pre-treatment sample (CDKN1B) or in the post-treatment sample (TP53, APC, CTNNB1). Proliferation-associated genes were frequently down-regulated in post-treatment ER+ tumors, but not in triple negative tumors. Genes involved in ECM were upregulated in the majority of post-chemotherapy samples. Genomic and transcriptomic differences between pre- and post-chemotherapy samples are common and may reveal potential mechanisms of therapy resistance. Our results show a wide range of distinct, but related mechanisms, with a prominent role for proliferation- and ECM-related genes.

6.
Cancers (Basel) ; 13(24)2021 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-34944934

RESUMO

While endocrine therapy is highly effective for the treatment of oestrogen receptor-α (ERα)-positive breast cancer, a significant number of patients will eventually experience disease progression and develop treatment-resistant, metastatic cancer. The majority of resistant tumours remain dependent on ERα-action, with activating ESR1 gene mutations occurring in 15-40% of advanced cancers. Therefore, there is an urgent need to discover novel effective therapies that can eradicate cancer cells with aberrant ERα and to understand the cellular response underlying their action. Here, we evaluate the response of MCF7-derived, CRISPR-Cas9-generated cell lines expressing mutant ERα (Y537S) to a large number of drugs. We report sensitivity to numerous clinically approved inhibitors, including CDK4/6 inhibitor ribociclib, which is a standard-of-care therapy in the treatment of metastatic ERα-positive breast cancer and currently under evaluation in the neoadjuvant setting. Ribociclib treatment induces senescence in both wildtype and mutant ERα breast cancer models and leads to a broad-range drug tolerance. Strikingly, viability of cells undergoing ribociclib-induced cellular senescence is maintained via engagement of EGFR signalling, which may be therapeutically exploited in both wildtype and mutant ERα-positive breast cancer. Our study highlights a wide-spread reduction in sensitivity to anti-cancer drugs accompanied with an acquired vulnerability to EGFR inhibitors following CDK4/6 inhibitor treatment.

7.
Nat Commun ; 12(1): 4360, 2021 07 16.
Artigo em Inglês | MEDLINE | ID: mdl-34272384

RESUMO

The glucocorticoid receptor (GR) regulates gene expression, governing aspects of homeostasis, but is also involved in cancer. Pharmacological GR activation is frequently used to alleviate therapy-related side-effects. While prior studies have shown GR activation might also have anti-proliferative action on tumours, the underpinnings of glucocorticoid action and its direct effectors in non-lymphoid solid cancers remain elusive. Here, we study the mechanisms of glucocorticoid response, focusing on lung cancer. We show that GR activation induces reversible cancer cell dormancy characterised by anticancer drug tolerance, and activation of growth factor survival signalling accompanied by vulnerability to inhibitors. GR-induced dormancy is dependent on a single GR-target gene, CDKN1C, regulated through chromatin looping of a GR-occupied upstream distal enhancer in a SWI/SNF-dependent fashion. These insights illustrate the importance of GR signalling in non-lymphoid solid cancer biology, particularly in lung cancer, and warrant caution for use of glucocorticoids in treatment of anticancer therapy related side-effects.


Assuntos
Antineoplásicos/farmacologia , Proliferação de Células/efeitos dos fármacos , Cromatina/metabolismo , Inibidor de Quinase Dependente de Ciclina p57/metabolismo , Glucocorticoides/farmacologia , Neoplasias Pulmonares/metabolismo , Receptores de Glucocorticoides/metabolismo , Animais , Ciclo Celular/genética , Linhagem Celular Tumoral , Proliferação de Células/genética , Sobrevivência Celular/efeitos dos fármacos , Cromatina/genética , Sequenciamento de Cromatina por Imunoprecipitação , Proteínas Cromossômicas não Histona/genética , Proteínas Cromossômicas não Histona/metabolismo , Inibidor de Quinase Dependente de Ciclina p57/genética , Elementos Facilitadores Genéticos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Imidazóis/farmacologia , Imuno-Histoquímica , Neoplasias Pulmonares/genética , Camundongos , Proteômica , Pirazinas/farmacologia , RNA Interferente Pequeno , RNA-Seq , Receptor IGF Tipo 1/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
8.
Endocr Relat Cancer ; 28(6): R157-R171, 2021 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-33852423

RESUMO

Glucocorticoid receptor (GR) is a key homeostatic regulator involved in governing immune response, neuro-integration, metabolism and lung function. In conjunction with its pivotal role in human biology, GR action is critically linked to the pathology of various disease types, including cancer. While pharmacological activation of GR has been used for the treatment of various liquid cancers, its role in solid cancers is less clearly defined and seems to be cancer-type dependent. This review focuses on the molecular aspects of GR biology, spanning the structural and functional basis of response to glucocorticoids, as well as how this transcription factor operates in cancer, including the implications in disease development, progression and drug resistance.


Assuntos
Glucocorticoides , Neoplasias , Glucocorticoides/metabolismo , Glucocorticoides/farmacologia , Glucocorticoides/uso terapêutico , Humanos , Neoplasias/tratamento farmacológico , Neoplasias/genética , Oncogenes , Receptores de Glucocorticoides/genética , Receptores de Glucocorticoides/metabolismo
9.
Nucleic Acids Res ; 49(7): 3856-3875, 2021 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-33751115

RESUMO

The glucocorticoid (GR) and androgen (AR) receptors execute unique functions in vivo, yet have nearly identical DNA binding specificities. To identify mechanisms that facilitate functional diversification among these transcription factor paralogs, we studied them in an equivalent cellular context. Analysis of chromatin and sequence suggest that divergent binding, and corresponding gene regulation, are driven by different abilities of AR and GR to interact with relatively inaccessible chromatin. Divergent genomic binding patterns can also be the result of subtle differences in DNA binding preference between AR and GR. Furthermore, the sequence composition of large regions (>10 kb) surrounding selectively occupied binding sites differs significantly, indicating a role for the sequence environment in guiding AR and GR to distinct binding sites. The comparison of binding sites that are shared shows that the specificity paradox can also be resolved by differences in the events that occur downstream of receptor binding. Specifically, shared binding sites display receptor-specific enhancer activity, cofactor recruitment and changes in histone modifications. Genomic deletion of shared binding sites demonstrates their contribution to directing receptor-specific gene regulation. Together, these data suggest that differences in genomic occupancy as well as divergence in the events that occur downstream of receptor binding direct functional diversification among transcription factor paralogs.


Assuntos
Cromatina/metabolismo , DNA/metabolismo , Receptores Androgênicos/metabolismo , Receptores de Glucocorticoides/metabolismo , Fatores de Transcrição/metabolismo , Sítios de Ligação , Linhagem Celular Tumoral , Regulação da Expressão Gênica , Humanos , Ligação Proteica
10.
Mol Aspects Med ; 78: 100939, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33358533

RESUMO

Estrogen Receptor (ERα) is a hormone-driven transcription factor, critically involved in driving tumor cell proliferation in the vast majority of breast cancers (BCas). ERα binds the genome at cis-regulatory elements, dictating the expression of a large spectrum of responsive genes in 3D genomic space. While initial reports described a rather static ERα chromatin binding repertoire, we now know that ERα DNA interactions are highly versatile, altered in breast tumor development and progression, and deviate between tumors from patients with differential outcome. Multiple cellular signaling cascades are known to impinge on ERα genomic function, changing its cistrome to retarget the receptor to other regions of the genome and reprogram its impact on breast cell biology. This review describes the current state-of-the-art on which factors manipulate the ERα cistrome and how this alters the response to both endogenous and exogenous hormonal stimuli, ultimately impacting BCa cell progression and response to commonly used therapeutic interventions. Novel insights in ERα cistrome dynamics may pave the way for better patient diagnostics and the development of novel therapeutic interventions, ultimately improving cancer care and patient outcome.


Assuntos
Neoplasias da Mama , Neoplasias da Mama/genética , Linhagem Celular Tumoral , Receptor alfa de Estrogênio/genética , Receptor alfa de Estrogênio/metabolismo , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Receptores de Estrogênio
11.
Invest New Drugs ; 33(5): 1012-9, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26123925

RESUMO

INTRODUCTION: Palbociclib is a cyclin dependent kinase (CDK) 4/6 inhibitor with nanomolar potency and was recently approved for treatment of breast cancer. The drug may also be useful in glioblastoma (GBM) and diffuse intrinsic pontine gliomas (DIPG), which often have an activated CDK4/6-retinoblastoma signaling pathway. However, GBM and DIPG spread widely into the surrounding brain, which calls for a CDK4/6 inhibitor with sufficient blood-brain barrier penetration. METHODS: We first performed in vitro transwell assays and demonstrate that palbociclib is a substrate of both P-gp and BCRP. Next, we conducted pharmacokinetic studies using wildtype, Abcg2(-/-), Abcb1a/b(-/-) and Abcg2; Abcb1a/b(-/-) mice. RESULTS: The plasma levels were about 3000 and 500 nM and similar in all genotypes at 1 and 4 h after i.v. administration of 10 mg/kg. At 4 h the brain-to-plasma ratios were 0.3 in WT and Abcg2(-/-) mice versus 5.5 and 15 in Abcb1a/b(-/-) and Abcg2; Abcb1a/b(-/-) mice, respectively. The oral bioavailability of palbociclib was high (63 %) in WT mice and increased only modestly and non-significantly in Abcg2; Abcb1a/b(-/-) mice. The plasma level after oral dosing of 150 mg/kg was already much higher than observed in patients (200-400 nM) and exceeded 2500 nM for up to 24 h. This latter dose is commonly used in preclinical studies, which calls into question their predictive value as they were conducted at dose levels causing a clinically non-relevant systemic drug exposure. CONCLUSION: Thus, the brain penetration of palbociclib is restricted by P-gp and BCRP, which may restrict the efficacy against GBM and DIPG. Moreover, preclinical studies with this agent should be conducted at a more clinically relevant dose level.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Transportadores de Cassetes de Ligação de ATP/metabolismo , Neoplasias Encefálicas/tratamento farmacológico , Glioma/tratamento farmacológico , Piperazinas/farmacologia , Piridinas/farmacologia , Administração Oral , Animais , Quinase 4 Dependente de Ciclina/antagonistas & inibidores , Quinase 6 Dependente de Ciclina/antagonistas & inibidores , Relação Dose-Resposta a Droga , Genótipo , Glioblastoma/tratamento farmacológico , Humanos , Camundongos , Piperazinas/farmacocinética , Piridinas/farmacocinética , Distribuição Tecidual
12.
J Hepatol ; 63(6): 1525-9, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26220753

RESUMO

Crigler-Najjar syndrome presents as severe unconjugated hyperbilirubinemia and is characteristically caused by a mutation in the UGT1A1 gene, encoding the enzyme responsible for bilirubin glucuronidation. Here we present a patient with Crigler-Najjar syndrome with a completely normal UGT1A1 coding region. Instead, a homozygous 3 nucleotide insertion in the UGT1A1 promoter was identified that interrupts the HNF1α binding site. This mutation results in almost complete abolishment of UGT1A1 promoter activity and prevents the induction of UGT1A1 expression by the liver nuclear receptors CAR and PXR, explaining the lack of a phenobarbital response in this patient. Although animal studies have revealed the importance of HNF1α for normal liver function, this case provides the first clinical proof that mutations in its binding site indeed result in severe liver pathology stressing the importance of promoter sequence analysis.


Assuntos
Síndrome de Crigler-Najjar/genética , Síndrome de Crigler-Najjar/metabolismo , Glucuronosiltransferase/deficiência , Glucuronosiltransferase/genética , Fator 1-alfa Nuclear de Hepatócito/metabolismo , Adulto , Sequência de Bases , Sítios de Ligação/genética , Receptor Constitutivo de Androstano , Síndrome de Crigler-Najjar/classificação , Feminino , Homozigoto , Humanos , Fígado/metabolismo , Dados de Sequência Molecular , Mutagênese Insercional , Regiões Promotoras Genéticas , Receptores Citoplasmáticos e Nucleares/metabolismo , Análise de Sequência de DNA , Transcrição Gênica/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA