Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 23(11)2022 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-35682673

RESUMO

T. gondii is a eukaryotic parasite that has evolved a stage called tachyzoite which multiplies in host cells by producing two daughter cells internally. These nascent tachyzoites bud off their mother and repeat the division process until the expanding progenies escape to settle and multiply in other host cells. Over these intra- and extra-cellular phases, the tachyzoite maintains an essential apicobasal polarity that emerges through a unique bidirectional budding process of the elongating cells. This process requires the assembly of several molecular complexes that, at the nascent pole, encompass structural and myosin motor elements. To characterize a recently identified basal pole marker named BCC7 with respect to the posterior myosin J and myosin C motors, we used conventional biochemistry as well as advanced proteomic and in silico analysis in conjunction with live and super resolution microscopy of transgenic fluorescent tachyzoites. We document that BCC7 forms a ribbed ring below which myosin C motor entities distribute regularly. In addition, we identified-among 13 BCC7 putative partners-two novel and five known members of the inner membrane complex (IMC) family which ends at the apical side of the ring. Therefore, BCC7 could assist the stabilization of the IMC plaques and contribute to the parasite biomechanical properties.


Assuntos
Toxoplasma , Divisão Celular , Miosinas/metabolismo , Proteômica , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Toxoplasma/metabolismo
2.
Virol J ; 17(1): 131, 2020 08 27.
Artigo em Inglês | MEDLINE | ID: mdl-32854725

RESUMO

BACKGROUND: The Covid19 infection is caused by the SARS-CoV-2 virus, a novel member of the coronavirus (CoV) family. CoV genomes code for a ORF1a / ORF1ab polyprotein and four structural proteins widely studied as major drug targets. The genomes also contain a variable number of open reading frames (ORFs) coding for accessory proteins that are not essential for virus replication, but appear to have a role in pathogenesis. The accessory proteins have been less well characterized and are difficult to predict by classical bioinformatics methods. METHODS: We propose a computational tool GOFIX to characterize potential ORFs in virus genomes. In particular, ORF coding potential is estimated by searching for enrichment in motifs of the X circular code, that is known to be over-represented in the reading frames of viral genes. RESULTS: We applied GOFIX to study the SARS-CoV-2 and related genomes including SARS-CoV and SARS-like viruses from bat, civet and pangolin hosts, focusing on the accessory proteins. Our analysis provides evidence supporting the presence of overlapping ORFs 7b, 9b and 9c in all the genomes and thus helps to resolve some differences in current genome annotations. In contrast, we predict that ORF3b is not functional in all genomes. Novel putative ORFs were also predicted, including a truncated form of the ORF10 previously identified in SARS-CoV-2 and a little known ORF overlapping the Spike protein in Civet-CoV and SARS-CoV. CONCLUSIONS: Our findings contribute to characterizing sequence properties of accessory genes of SARS coronaviruses, and especially the newly acquired genes making use of overlapping reading frames.


Assuntos
Betacoronavirus/genética , Genoma Viral , Fases de Leitura Aberta , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/genética , Proteínas Virais Reguladoras e Acessórias/genética , Animais , Códon , Biologia Computacional , Evolução Molecular , Genes Virais , Humanos , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/genética , Proteínas da Matriz Viral/genética , Proteínas Virais/química , Proteínas Virais/genética , Proteínas Virais Reguladoras e Acessórias/química
3.
Structure ; 27(4): 579-589.e5, 2019 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-30744994

RESUMO

Despite sharing common features, previous studies have shown that gyrases from different species have been modified throughout evolution to modulate their properties. Here, we report two crystal structures of Mycobacterium tuberculosis DNA gyrase, an apo and AMPPNP-bound form at 2.6-Å and 3.3-Å resolution, respectively. These structures provide high-resolution structural data on the quaternary organization and interdomain connections of a gyrase (full-length GyrB-GyrA57)2 thus providing crucial inputs on this essential drug target. Together with small-angle X-ray scattering studies, they revealed an "extremely open" N-gate state, which persists even in the DNA-free gyrase-AMPPNP complex and an unexpected connection between the ATPase and cleavage core domains mediated by two Corynebacteriales-specific motifs, respectively the C-loop and DEEE-loop. We show that the C-loop participates in the stabilization of this open conformation, explaining why this gyrase has a lower ATPase activity. Our results image a conformational state which might be targeted for drug discovery.


Assuntos
Adenosina Trifosfatases/genética , Trifosfato de Adenosina/química , Apoproteínas/química , Corynebacterium/química , DNA Girase/química , Mycobacterium tuberculosis/química , Adenosina Trifosfatases/química , Adenosina Trifosfatases/metabolismo , Trifosfato de Adenosina/metabolismo , Adenilil Imidodifosfato/química , Adenilil Imidodifosfato/metabolismo , Sequência de Aminoácidos , Apoproteínas/genética , Apoproteínas/metabolismo , Sítios de Ligação , Clonagem Molecular , Corynebacterium/enzimologia , Cristalografia por Raios X , DNA/química , DNA/metabolismo , DNA Girase/genética , DNA Girase/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Cinética , Modelos Moleculares , Mycobacterium tuberculosis/enzimologia , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Estrutura Quaternária de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos
4.
Nucleic Acids Res ; 42(13): 8578-91, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24990376

RESUMO

Type II DNA topoisomerases are divided into two families, IIA and IIB. Types IIA and IIB enzymes share homologous B subunits encompassing the ATP-binding site, but have non-homologous A subunits catalyzing DNA cleavage. Type IIA topoisomerases are ubiquitous in Bacteria and Eukarya, whereas members of the IIB family are mostly present in Archaea and plants. Here, we report the detection of genes encoding type IIB enzymes in which the A and B subunits are fused into a single polypeptide. These proteins are encoded in several bacterial genomes, two bacterial plasmids and one archaeal plasmid. They form a monophyletic group that is very divergent from archaeal and eukaryotic type IIB enzymes (DNA topoisomerase VI). We propose to classify them into a new subfamily, denoted DNA topoisomerase VIII. Bacterial genes encoding a topoisomerase VIII are present within integrated mobile elements, most likely derived from conjugative plasmids. Purified topoisomerase VIII encoded by the plasmid pPPM1a from Paenibacillus polymyxa M1 had ATP-dependent relaxation and decatenation activities. In contrast, the enzyme encoded by mobile elements integrated into the genome of Ammonifex degensii exhibited DNA cleavage activity producing a full-length linear plasmid and that from Microscilla marina exhibited ATP-independent relaxation activity. Topoisomerases VIII, the smallest known type IIB enzymes, could be new promising models for structural and mechanistic studies.


Assuntos
Archaea/enzimologia , Bactérias/enzimologia , DNA Topoisomerases/classificação , Sequência de Aminoácidos , Archaea/genética , Proteínas Arqueais/química , Proteínas Arqueais/classificação , Proteínas Arqueais/genética , Proteínas Arqueais/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/classificação , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sequência Conservada , DNA Topoisomerases/química , DNA Topoisomerases/genética , DNA Topoisomerases/metabolismo , Genoma Bacteriano , Filogenia , Plasmídeos/genética
5.
Biochem J ; 456(2): 263-73, 2013 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-24015710

RESUMO

DNA gyrase, a type II topoisomerase, regulates DNA topology by creating a double-stranded break in one DNA duplex and transporting another DNA duplex [T-DNA (transported DNA)] through this break. The ATPase domains dimerize, in the presence of ATP, to trap the T-DNA segment. Hydrolysis of only one of the two ATPs, and release of the resulting Pi, is rate-limiting in DNA strand passage. A long unresolved puzzle is how the non-hydrolysable ATP analogue AMP-PNP (adenosine 5'-[ß,γ-imido]triphosphate) can catalyse one round of DNA strand passage without Pi release. In the present paper we discuss two crystal structures of the Mycobacterium tuberculosis DNA gyrase ATPase domain: one complexed with AMP-PCP (adenosine 5'-[ß,γ-methylene]triphosphate) was unexpectedly monomeric, the other, an AMP-PNP complex, crystallized as a dimer. In the AMP-PNP structure, the unprotonated nitrogen (P-N=P imino) accepts hydrogen bonds from a well-ordered 'ATP lid', which is known to be required for dimerization. The equivalent CH2 group, in AMP-PCP, cannot accept hydrogen bonds, leaving the 'ATP lid' region disordered. Further analysis suggested that AMP-PNP can be converted from the imino (P-N=P) form into the imido form (P-NH-P) during the catalytic cycle. A main-chain NH is proposed to move to either protonate AMP-P-N=P to AMP-P-NH-P, or to protonate ATP to initiate ATP hydrolysis. This suggests a novel dissociative mechanism for ATP hydrolysis that could be applicable not only to GHKL phosphotransferases, but also to unrelated ATPases and GTPases such as Ras. On the basis of the domain orientation in our AMP-PCP structure we propose a mechanochemical scheme to explain how ATP hydrolysis is coupled to domain motion.


Assuntos
Adenosina Trifosfatases/química , Trifosfato de Adenosina/análogos & derivados , Proteínas de Bactérias/química , DNA Girase/química , Mycobacterium tuberculosis/enzimologia , Trifosfato de Adenosina/química , Biocatálise , Domínio Catalítico , Cristalografia por Raios X , DNA Topoisomerases Tipo II/química , Ligação de Hidrogênio , Hidrólise , Modelos Moleculares , Ligação Proteica , Estrutura Secundária de Proteína , Homologia Estrutural de Proteína
6.
Artigo em Inglês | MEDLINE | ID: mdl-23722853

RESUMO

Mycobacterium tuberculosis DNA gyrase, a nanomachine involved in the regulation of DNA topology, is the only type II topoisomerase present in this organism and hence is the sole target of fluoroquinolones in the treatment of tuberculosis. The ATPase domain provides the energy required for catalysis by ATP hydrolysis. Two constructs corresponding to this 43 kDa domain, Mtb-GyrB47(C1) and Mtb-GyrB47(C2), have been overproduced, purified and crystallized. Diffraction data were collected from three crystal forms. The crystals belonged to space groups P1 and P21 and diffracted to resolutions of 2.9 and 3.3 Å, respectively.


Assuntos
Adenosina Trifosfatases/química , Proteínas de Bactérias/química , DNA Girase/química , Mycobacterium tuberculosis/enzimologia , Adenosina Trifosfatases/isolamento & purificação , Proteínas de Bactérias/isolamento & purificação , Cristalização , Cristalografia por Raios X , DNA Girase/isolamento & purificação
8.
PLoS One ; 4(3): e4712, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19266066

RESUMO

Self-compartmentalizing proteases orchestrate protein turnover through an original architecture characterized by a central catalytic chamber. Here we report the first structure of an archaeal member of a new self-compartmentalizing protease family forming a cubic-shaped octamer with D(4) symmetry and referred to as CubicO. We solved the structure of the Pyrococcus abyssi Pab87 protein at 2.2 A resolution using the anomalous signal of the high-phasing-power lanthanide derivative Lu-HPDO3A. A 20 A wide channel runs through this supramolecular assembly of 0.4 MDa, giving access to a 60 A wide central chamber holding the eight active sites. Surprisingly, activity assays revealed that Pab87 degrades specifically d-amino acid containing peptides, which have never been observed in archaea. Genomic context of the Pab87 gene showed that it is surrounded by genes involved in the amino acid/peptide transport or metabolism. We propose that CubicO proteases are involved in the processing of d-peptides from environmental origins.


Assuntos
Peptídeo Hidrolases/química , Pyrococcus abyssi/enzimologia , Archaea , Cristalografia por Raios X , Peptídeos/química , Conformação Proteica , Especificidade por Substrato
9.
FEBS J ; 275(6): 1240-7, 2008 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-18266761

RESUMO

The core light-harvesting LH1 protein from Rhodospirillum rubrum can dissociate reversibly in the presence of n-octyl-beta-D-glucopyranoside into smaller subunit forms, exhibiting a dramatic blue-shift in absorption. During this process, two main species are observed: a dimer that absorbs at 820 nm (B820) and a monomer absorbing at 777 nm (B777). In the presence of n-octyl-beta-D-glucopyranoside, we have previously shown that the B820 form is not only constituted by the alphabeta heterodimer alone, but that it exists in an equilibrium between the alphabeta heterodimer and beta(2) homodimer states. We investigated the dissociation equilibrium for both oligomeric B820 forms. Using a theoretical model for alphabeta and beta(2), we conclude that the B820 homodimer is stabilized by both hydrophobic effects (entropy) and non-covalent bonds (enthalpy). We discuss a possible interpretation of the energy changes.


Assuntos
Proteínas de Bactérias/química , Entropia , Complexos de Proteínas Captadores de Luz/química , Rhodospirillum rubrum/enzimologia , Dimerização , Estabilidade Enzimática , Glucosídeos/química , Modelos Moleculares , Peptídeos/química , Conformação Proteica
10.
J Biol Chem ; 282(18): 13151-9, 2007 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-17311917

RESUMO

We report here the first direct assessment of the specificity of a class of peptidoglycan cross-linking enzymes, the L,D-transpeptidases, for the highly diverse structure of peptidoglycan precursors of Gram-positive bacteria. The lone functionally characterized member of this new family of active site cysteine peptidases, Ldt(fm) from Enterococcus faecium, was previously shown to bypass the D,D-transpeptidase activity of the classical penicillin-binding proteins leading to high level cross-resistance to glycopeptide and beta-lactam antibiotics. Ldt(fm) homologues from Bacillus subtilis (Ldt(Bs)) and E. faecalis (Ldt(fs)) were found here to cross-link their cognate disaccharide-peptide subunits containing meso-diaminopimelic acid (mesoDAP(3)) and L-Lys(3)-L-Ala-L-Ala at the third position of the stem peptide, respectively, instead of L-Lys(3)-d-iAsn in E. faecium. Ldt(fs) differed from Ldt(fm) and Ldt(Bs) by its capacity to hydrolyze the L-Lys(3)-D-Ala(4) bond of tetrapeptide (L,D-carboxypeptidase activity) and pentapeptide (L,D-endopeptidase activity) stems, in addition to the common cross-linking activity. The three enzymes were specific for their cognate acyl acceptors in the cross-linking reaction. In contrast to Ldt(fs), which was also specific for its cognate acyl donor, Ldt(fm) tolerated substitution of L-Lys(3)-D-iAsn by L-Lys(3)-L-Ala-L-Ala. Likewise, Ldt(Bs) tolerated substitution of mesoDAP(3) by L-Lys(3)-D-iAsn and L-Lys(3)-L-Ala-L-Ala in the acyl donor. Thus, diversification of the structure of peptidoglycan precursors associated with speciation has led to a parallel evolution of the substrate specificity of the L,D-transpeptidases affecting mainly the recognition of the acyl acceptor. Blocking the assembly of the side chain could therefore be used to combat antibiotic resistance involving L,D-transpeptidases.


Assuntos
Bacillus subtilis/genética , Proteínas de Bactérias/genética , Enterococcus faecalis/genética , Proteínas de Ligação às Penicilinas/genética , Peptidoglicano/genética , Peptidil Transferases/genética , Bacillus subtilis/enzimologia , Proteínas de Bactérias/metabolismo , Parede Celular/enzimologia , Parede Celular/genética , Cisteína Endopeptidases/genética , Ácido Diaminopimélico/metabolismo , Farmacorresistência Bacteriana/genética , Enterococcus faecalis/enzimologia , Oligopeptídeos/metabolismo , Proteínas de Ligação às Penicilinas/metabolismo , Peptidoglicano/biossíntese , Homologia de Sequência de Aminoácidos , Especificidade da Espécie , Especificidade por Substrato
11.
Hum Mol Genet ; 13(3): 323-34, 2004 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-14662653

RESUMO

The ARHGEF5/TIM oncogene belongs to the Dbl family of guanine nucleotide exchange factors (GEFs) for Rho GTPases. It is well established that Rho-GEFs play an important role in tumorigenesis and metastasis through the activation of their substrates, the Rho GTPases. Little is known about ARHGEF5/TIM oncogene expression and cellular functions. Because of its localization close to the common fragile site FRA7I, which has been shown to be responsible for an inverted duplication of the 7q34-q35 region in breast carcinoma cells, we examined the expression of the ARHGEF5/TIM oncogene in normal and tumoral breast tissue. We report here the identification of five novel ARHGEF5/TIM alternative transcripts specifically expressed in breast tumors. These variant transcripts were characterized by the absence of one or several exons, all coding for the catalytic Dbl-homology domain and generating modified or truncated predicted variant proteins. The variant transcripts were predominantly expressed in breast carcinoma cell lines and in the most aggressive primary breast carcinomas, suggesting they may play a role in breast tumor progression. Moreover, we demonstrate that the expression of recombinant ARHGEF5/TIM protein in transfected COS-7 and NIH-3T3 cells generated a loss of actin stress fibers and the formation of membrane ruffles and filopodia. This pattern suggests that ARHGEF5/TIM activates Rac1, Cdc42 or RhoG rather than RhoA, as previously demonstrated in in vitro guanine nucleotide exchange assays. We anticipate that the activation of the ARHGEF5/TIM oncogene, possibly by the variant isoforms detected here, may play an important role in proliferative breast disease.


Assuntos
Processamento Alternativo , Neoplasias da Mama/genética , Fatores de Troca do Nucleotídeo Guanina/genética , Actinas/metabolismo , Sequência de Aminoácidos , Animais , Neoplasias da Mama/metabolismo , Células COS , Carcinoma/genética , Feminino , Fatores de Troca do Nucleotídeo Guanina/biossíntese , Humanos , Camundongos , Dados de Sequência Molecular , Células NIH 3T3
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA