Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Trauma Acute Care Surg ; 92(2): 313-322, 2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-34738997

RESUMO

BACKGROUND: The earliest measurable changes to postinjury platelet biology may be in the platelet transcriptome, as platelets are known to carry messenger ribonucleic acids (RNAs), and there is evidence in other inflammatory and infectious disease states of differential and alternative platelet RNA splicing in response to changing physiology. Thus, the aim of this exploratory pilot study was to examine the platelet transcriptome and platelet RNA splicing signatures in trauma patients compared with healthy donors. METHODS: Preresuscitation platelets purified from trauma patients (n = 9) and healthy donors (n = 5) were assayed using deep RNA sequencing. Differential gene expression analysis, weighted gene coexpression network analysis, and differential alternative splicing analyses were performed. In parallel samples, platelet function was measured with platelet aggregometry, and clot formation was measured with thromboelastography. RESULTS: Differential gene expression analysis identified 49 platelet RNAs to have differing abundance between trauma patients and healthy donors. Weighted gene coexpression network analysis identified coexpressed platelet RNAs that correlated with platelet aggregation. Differential alternative splicing analyses revealed 1,188 splicing events across 462 platelet RNAs that were highly statistically significant (false discovery rate <0.001) in trauma patients compared with healthy donors. Unsupervised principal component analysis of these platelet RNA splicing signatures segregated trauma patients in two main clusters separate from healthy controls. CONCLUSION: Our findings provide evidence of finetuning of the platelet transcriptome through differential alternative splicing of platelet RNA in trauma patients and that this finetuning may have relevance to downstream platelet signaling. Additional investigations of the trauma platelet transcriptome should be pursued to improve our understanding of the platelet functional responses to trauma on a molecular level.


Assuntos
Transtornos da Coagulação Sanguínea/etiologia , Transtornos da Coagulação Sanguínea/genética , Plaquetas/metabolismo , RNA/metabolismo , Transcriptoma , Ferimentos e Lesões/complicações , Feminino , Perfilação da Expressão Gênica , Humanos , Masculino , Projetos Piloto , Ativação Plaquetária , Agregação Plaquetária , Tromboelastografia
2.
Glia ; 59(9): 1322-40, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21351158

RESUMO

Central nervous system (CNS) physiology requires special chemical, metabolic, and cellular privileges for normal function, and blood-brain barrier (BBB) structures are the anatomic and physiologic constructs that arbitrate communication between the brain and body. In the vertebrate BBB, two primary cell types create CNS exclusion biology, a polarized vascular endothelium (VE), and a tightly associated single layer of astrocytic glia (AG). Examples of direct action by the BBB in CNS disease are constantly expanding, including key pathophysiologic roles in multiple sclerosis, stroke, and cancer. In addition, its role as a pharmacologic treatment obstacle to the brain is long standing; thus, molecular model systems that can parse BBB functions and understand the complex integration of sophisticated cellular anatomy and highly polarized chemical protection physiology are desperately needed. Compound barrier structures that use two primary cell types (i.e., functional bicellularity) are common to other humoral/CNS barrier structures. For example, invertebrates use two cell layers of glia, perineurial and subperineurial, to control chemical access to the brain, and analogous glial layers, fenestrated and pseudocartridge, to maintain the blood-eye barrier. In this article, we summarize our current understanding of brain-barrier glial anatomy in Drosophila, demonstrate the power of live imaging as a screening methodology for identifying physiologic characteristics of BBB glia, and compare the physiologies of Drosophila barrier layers to the VE/AG interface of vertebrates. We conclude that many unique BBB physiologies are conserved across phyla and suggest new methods for modeling CNS physiology and disease.


Assuntos
Barreira Hematoencefálica/anatomia & histologia , Barreira Hematoencefálica/fisiologia , Encéfalo/anatomia & histologia , Encéfalo/fisiologia , Drosophila/fisiologia , Neuroglia/fisiologia , Animais , Comportamento Animal/fisiologia , Barreira Hematoencefálica/lesões , Barreira Hematorretiniana/anatomia & histologia , Barreira Hematorretiniana/lesões , Barreira Hematorretiniana/fisiologia , Química Encefálica/fisiologia , Feminino , Humanos , Masculino , Microscopia Confocal , Modelos Biológicos , Neuroglia/química , Neuroglia/metabolismo , Neuroglia/ultraestrutura , Retina/anatomia & histologia , Retina/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA