Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nutrients ; 14(19)2022 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-36235566

RESUMO

Transition towards plant-based diets is advocated to reduce the climate footprint. Health implications of a diet composed of meat substitutes are currently unknown, and there are knowledge gaps in their nutritional composition and quality. Samples of available meat substitutes were bought in two convenience stores in the city of Gothenburg, Sweden, and were included in the study. Meat substitutes (n = 44) were analyzed for their contents of dietary fiber, fat, iron, zinc, phytate, salt, total phenolics and protein, as well as for their amino acid and fatty acid composition. Bioavailability of iron and zinc was estimated based on the phytate:mineral molar ratio. We found large variations in the nutritional composition of the analyzed meat substitutes. Amino acid profiles seemed to be affected by processing methods. Mycoprotein products were rich in zinc, with a median content of 6.7 mg/100 g, and had very low content of phytate, which suggests mycoprotein as a good source of zinc. Degradability of fungal cell walls might, however, pose as a potential aggravating factor. None of the products could be regarded as a good source of iron due to very high content of phytate (9 to 1151 mg/100 g) and/or low content of iron (0.4 to 4.7 mg/100 g). Phytate:iron molar ratios in products with iron contents >2.1 mg/100 g ranged from 2.5 to 45. Tempeh stood out as a protein source with large potential due to low phytate content (24 mg/100 g) and an iron content (2 mg/100 g) close to the level of a nutrition claim. Producers of the products analyzed in this study appear to use nutritional claims regarding iron that appear not in line with European regulations, since the iron is in a form not available by the body. Meat substitutes analyzed in this study do not contribute to absorbed iron in a relevant manner. Individuals following mainly plant-based diets have to meet their iron needs through other sources. Salt and saturated fat were high in certain products, while other products were more in line with nutritional recommendations. Further investigation of the nutritional and health effects of protein extraction and extrusion is needed. We conclude that nutritional knowledge needs to be implemented in product development of meat substitutes.


Assuntos
Ácido Fítico , Zinco , Aminoácidos/metabolismo , Disponibilidade Biológica , Dieta , Fibras na Dieta , Ácidos Graxos , Humanos , Ferro/análise , Carne , Ácido Fítico/farmacologia , Suécia , Zinco/metabolismo
2.
Nutrients ; 14(15)2022 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-35956338

RESUMO

Meat analogs based on plant protein extracts are rising in popularity as meat consumption declines. A dietary shift away from meat, which has a high iron bioavailability, may have a negative effect on the amount of iron absorbed from the diet. Iron absorption from legumes cultivated in regions not suitable for soy production, such as fava bean, has not yet been explored. The aim of this study was to evaluate non-heme iron absorption from a meal with texturized fava bean protein compared to beef and cod protein meals. The study included two single-blinded iron isotope trials in healthy Swedish women of the ages 18-45 years, each of whom served as their own control. The participants were served matched test meals containing beef and fava bean protein (Study 1) or cod and fava bean protein (Study 2) with radiolabeled non-heme iron 55Fe and 59Fe. The absorption of non-heme iron from test meals was measured by whole-body counting and erythrocyte incorporation. The absorption of non-heme iron, measured as erythrocyte incorporation ratio, from beef protein meal was 4.2 times higher compared to texturized fava bean meal, and absorption from cod protein meal was 2.7 times higher compared to the fava bean meal. The adjusted non-heme iron absorption, normalized to a 40% reference dose uptake, was 9.2% for cod protein meal, 21.7% for beef protein meal, and 4.2% for texturized fava bean meal. A fava bean protein meal has markedly lower iron bioavailability in healthy females compared with a meal of beef or cod protein. Therefore, a dietary shift from meat and fish protein to fava bean protein may increase the risk of iron deficiency.


Assuntos
Fabaceae , Vicia faba , Adolescente , Adulto , Animais , Disponibilidade Biológica , Bovinos , Feminino , Humanos , Absorção Intestinal , Ferro/metabolismo , Refeições , Pessoa de Meia-Idade , Ensaios Clínicos Controlados Aleatórios como Assunto , Vicia faba/metabolismo , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA