Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 15(1): e0226340, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31940362

RESUMO

Structural variation (SV) is typically defined as variation within the human genome that exceeds 50 base pairs (bp). SV may be copy number neutral or it may involve duplications, deletions, and complex rearrangements. Recent studies have shown SV to be associated with many human diseases. However, studies of SV have been challenging due to technological constraints. With the advent of third generation (long-read) sequencing technology, exploration of longer stretches of DNA not easily examined previously has been made possible. In the present study, we utilized third generation (long-read) sequencing techniques to examine SV in the EGFR landscape of four haplotypes derived from two human samples. We analyzed the EGFR gene and its landscape (+/- 500,000 base pairs) using this approach and were able to identify a region of non-coding DNA with over 90% similarity to the most common activating EGFR mutation in non-small cell lung cancer. Based on previously published Alu-element genome instability algorithms, we propose a molecular mechanism to explain how this non-coding region of DNA may be interacting with and impacting the stability of the EGFR gene and potentially generating this cancer-driver gene. By these techniques, we were also able to identify previously hidden structural variation in the four haplotypes and in the human reference genome (hg38). We applied previously published algorithms to compare the relative stabilities of these five different EGFR gene landscape haplotypes to estimate their relative potentials to generate the EGFR exon 19, 15 bp canonical deletion. To our knowledge, the present study is the first to use the differences in genomic architecture between targeted cancer-linked phased haplotypes to estimate their relative potentials to form a common cancer-linked driver mutation.


Assuntos
Genes erbB-1/genética , Variação Genética , Genoma Humano/genética , Instabilidade Genômica , Sequenciamento de Nucleotídeos em Larga Escala , Carcinoma Pulmonar de Células não Pequenas/genética , Simulação por Computador , Haplótipos , Humanos , Neoplasias Pulmonares/genética , Análise de Sequência de DNA
2.
Cell ; 173(3): 581-594.e12, 2018 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-29656895

RESUMO

Clear-cell renal cell carcinoma (ccRCC) exhibits a broad range of metastatic phenotypes that have not been systematically studied to date. Here, we analyzed 575 primary and 335 metastatic biopsies across 100 patients with metastatic ccRCC, including two cases sampledat post-mortem. Metastatic competence was afforded by chromosome complexity, and we identify 9p loss as a highly selected event driving metastasis and ccRCC-related mortality (p = 0.0014). Distinct patterns of metastatic dissemination were observed, including rapid progression to multiple tissue sites seeded by primary tumors of monoclonal structure. By contrast, we observed attenuated progression in cases characterized by high primary tumor heterogeneity, with metastatic competence acquired gradually and initial progression to solitary metastasis. Finally, we observed early divergence of primitive ancestral clones and protracted latency of up to two decades as a feature of pancreatic metastases.


Assuntos
Carcinoma de Células Renais/genética , Carcinoma de Células Renais/patologia , Neoplasias Renais/genética , Neoplasias Renais/patologia , Mutação , Metástase Neoplásica , Adulto , Idoso , Idoso de 80 Anos ou mais , Biomarcadores/metabolismo , Biópsia , Mapeamento Cromossômico , Cromossomos Humanos Par 14 , Cromossomos Humanos Par 9 , Progressão da Doença , Feminino , Humanos , Estudos Longitudinais , Masculino , Pessoa de Meia-Idade , Fenótipo , Estudos Prospectivos , Trombose , Resultado do Tratamento
3.
J Bacteriol ; 185(7): 2330-7, 2003 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-12644504

RESUMO

We present the 4.8-Mb complete genome sequence of Salmonella enterica serovar Typhi strain Ty2, a human-specific pathogen causing typhoid fever. A comparison with the genome sequence of recently isolated S. enterica serovar Typhi strain CT18 showed that 29 of the 4,646 predicted genes in Ty2 are unique to this strain, while 84 genes are unique to CT18. Both genomes contain more than 200 pseudogenes; 9 of these genes in CT18 are intact in Ty2, while 11 intact CT18 genes are pseudogenes in Ty2. A half-genome interreplichore inversion in Ty2 relative to CT18 was confirmed. The two strains exhibit differences in prophages, insertion sequences, and island structures. While CT18 carries two plasmids, one conferring multiple drug resistance, Ty2 has no plasmids and is sensitive to antibiotics.


Assuntos
Proteínas de Ligação a DNA , Genoma Bacteriano , Salmonella typhi/genética , Adenosina Trifosfatases/genética , Proteínas de Bactérias/genética , Cromossomos Bacterianos , Elementos de DNA Transponíveis , Farmacorresistência Bacteriana Múltipla/genética , Proteínas de Escherichia coli/genética , Genes Bacterianos , Genômica , Dados de Sequência Molecular , Proteína MutS de Ligação de DNA com Erro de Pareamento , Nitrato Redutase , Nitrato Redutases/genética , Plasmídeos/genética , Prófagos/genética , Pseudogenes , Análise de Sequência de DNA , Fator sigma/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA