Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
Oncogenesis ; 9(7): 68, 2020 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-32709889

RESUMO

Cancer cells are characterized by the Warburg effect, a shift from mitochondrial respiration to oxidative glycolysis. We report here the crucial role of cyclin D1 in promoting this effect in a cyclin-dependent kinase (CDK)4/6-independent manner in multiple myeloma (MM) cells. We show that the cyclin D1 oncoprotein targets hexokinase 2 (HK2), a major glycolysis regulator, through two original molecular mechanisms in the cytoplasmic and nuclear compartments. In the cytoplasm, cyclin D1 binds HK2 at the outer mitochondrial membrane, and in the nucleus, it binds hypoxia-inducible factor-1α (HIF1α), which regulates HK2 gene transcription. We also show that high levels of HK2 expression are correlated with shorter event-free survival (EFS) and overall survival (OS) in MM patients. HK2 may therefore be considered as a possible target for antimyeloma therapy.

2.
BMC Med ; 8: 19, 2010 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-20334641

RESUMO

BACKGROUND: Amifostine (WR-2721, delivered as Ethyol) is a phosphorylated aminothiol compound clinically used in addition to cis-platinum to reduce the toxic side effects of therapeutic treatment on normal cells without reducing their efficacy on tumour cells. Its mechanism of action is attributed to the free radical scavenging properties of its active dephosphorylated metabolite WR-1065. However, amifostine has also been described as a potent hypoxia-mimetic compound and as a strong p53 inducer; both effects are known to potently modulate vascular endothelial growth factor (VEGF-A) expression. The angiogenic properties of this drug have not been clearly defined. METHODS: Cancer cell lines and endothelial cells were used in culture and treated with Amifostine in order to study (i) the expression of angiogenesis related genes and proteins and (ii) the effects of the drug on VEGF-A induced in vitro angiogenesis. RESULTS: We demonstrated that the treatment of several human cancer cell lines with therapeutical doses of WR-1065 led to a strong induction of different VEGF-A mRNA isoforms independently of HIF-1alpha. VEGF-A induction by WR-1065 depends on the activation of the eIF2alpha/ATF4 pathway. This up-regulation of VEGF-A mRNA was accompanied by an increased secretion of VEGF-A proteins fully active in stimulating vascular endothelial cells (EC). Nevertheless, direct treatment of EC with amifostine impaired their ability to respond to exogenous VEGF-A, an effect that correlated to the down-regulation of VEGFR-2 expression, to the reduction in cell surface binding of VEGF-A and to the decreased phosphorylation of the downstream p42/44 kinases. CONCLUSIONS: Taken together, our results indicate that amifostine treatment modulates tumour angiogenesis by two apparently opposite mechanisms - the increased VEGF-A expression by tumour cells and the inhibition of EC capacity to respond to VEGF-A stimulation.


Assuntos
Amifostina/farmacologia , Moduladores da Angiogênese/farmacologia , Sequestradores de Radicais Livres/farmacologia , Expressão Gênica/efeitos dos fármacos , Ativação Transcricional/efeitos dos fármacos , Fator A de Crescimento do Endotélio Vascular/biossíntese , Fator A de Crescimento do Endotélio Vascular/metabolismo , Linhagem Celular , Células Cultivadas , Humanos , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/biossíntese
3.
Genomics ; 87(1): 84-92, 2006 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-16314073

RESUMO

Congenital erythropoietic porphyria (CEP) is a recessive autosomal disorder characterized by a deficiency in uroporphyrinogen III synthase (UROS), the fourth enzyme of the heme biosynthetic pathway. The severity of the disease, the lack of specific treatment except for allogeneic bone marrow transplantation, and the knowledge of the molecular lesions are strong arguments for gene therapy. An animal model of CEP has been designed to evaluate the feasibility of retroviral gene transfer in hematopoietic stem cells. We have previously demonstrated that the knockout of the Uros gene is lethal in mice (Uros(del) model). This work describes the achievement of a knock-in model, which reproduces a mutation of the UROS gene responsible for a severe UROS deficiency in humans (P248Q missense mutant). Homozygous mice display erythrodontia, moderate photosensitivity, hepatosplenomegaly, and hemolytic anemia. Uroporphyrin (99% type I isomer) accumulates in urine. Total porphyrins are increased in erythrocytes and feces, while Uros enzymatic activity is below 1% of the normal level in the different tissues analyzed. These pathological findings closely mimic the CEP disease in humans and demonstrate that the Uros(mut248) mouse represents a suitable model of the human disease for pathophysiological, pharmaceutical, and therapeutic purposes.


Assuntos
Substituição de Aminoácidos , Mutação de Sentido Incorreto , Porfiria Eritropoética/enzimologia , Uroporfirinogênio III Sintetase/genética , Animais , Transplante de Medula Óssea , Modelos Animais de Doenças , Terapia Genética , Camundongos , Camundongos Transgênicos , Porfiria Eritropoética/patologia , Porfiria Eritropoética/terapia , Uroporfirinogênio III Sintetase/metabolismo , Uroporfirinas/metabolismo
4.
Mol Ther ; 4(4): 331-8, 2001 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-11592836

RESUMO

Successful treatment of blood disorders by gene therapy has several complications, one of which is the frequent lack of selective advantage of genetically corrected cells. Erythropoietic protoporphyria (EPP), caused by a ferrochelatase deficiency, is a good model of hematological genetic disorders with a lack of spontaneous in vivo selection. This disease is characterized by accumulation of protoporphyrin in red blood cells, bone marrow, and other organs, resulting in severe skin photosensitivity. Here we develop a self-inactivating lentiviral vector containing human ferrochelatase cDNA driven by the human ankyrin-1/beta-globin HS-40 chimeric erythroid promoter/enhancer. We collected bone marrow cells from EPP male donor mice for lentiviral transduction and injected them into lethally irradiated female EPP recipient mice. We observed a high transduction efficiency of hematopoietic stem cells resulting in effective gene therapy of primary and secondary recipient EPP mice without any selectable system. Skin photosensitivity was corrected for all secondary engrafted mice and was associated with specific ferrochelatase expression in the erythroid lineage. An erythroid-specific expression was sufficient to reverse most of the clinical and biological manifestations of the disease. This improvement in the efficiency of gene transfer with lentiviruses may contribute to the development of successful clinical protocols for erythropoietic diseases.


Assuntos
Células da Medula Óssea/metabolismo , Modelos Animais de Doenças , Terapia Genética/métodos , Lentivirus/genética , Porfiria Hepatoeritropoética/genética , Porfiria Hepatoeritropoética/terapia , Animais , Southern Blotting , Transplante de Medula Óssea , Linhagem Celular , Elementos Facilitadores Genéticos/genética , Feminino , Ferroquelatase/genética , Ferroquelatase/metabolismo , Ferroquelatase/uso terapêutico , Expressão Gênica/genética , Vetores Genéticos/genética , Humanos , Lentivirus/fisiologia , Masculino , Camundongos , Especificidade de Órgãos , Porfiria Hepatoeritropoética/enzimologia , Porfiria Hepatoeritropoética/patologia , Porfirinas/metabolismo , Regiões Promotoras Genéticas/genética , Protoporfiria Eritropoética , Pele/patologia , Transdução Genética
5.
Gene Ther ; 8(8): 618-26, 2001 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-11320408

RESUMO

Erythropoietic protoporphyria is characterized clinically by skin photosensitivity and biochemically by a ferrochelatase deficiency resulting in an excessive accumulation of photoreactive protoporphyrin in erythrocytes, plasma and other organs. The availability of the Fech(m1Pas)/Fech(m1Pas) murine model allowed us to test a gene therapy protocol to correct the porphyric phenotype. Gene therapy was performed by ex vivo transfer of human ferrochelatase cDNA with a retroviral vector to deficient hematopoietic cells, followed by re-injection of the transduced cells with or without selection in the porphyric mouse. Genetically corrected cells were separated by FACS from deficient ones by the absence of fluorescence when illuminated under ultraviolet light. Five months after transplantation, the number of fluorescent erythrocytes decreased from 61% (EPP mice) to 19% for EPP mice engrafted with low fluorescent selected BM cells. Absence of skin photosensitivity was observed in mice with less than 20% of fluorescent RBC. A partial phenotypic correction was found for animals with 20 to 40% of fluorescent RBC. In conclusion, a partial correction of bone marrow cells is sufficient to reverse the porphyric phenotype and restore normal hematopoiesis. This selection system represents a rapid and efficient procedure and an excellent alternative to the use of potentially harmful gene markers in retroviral vectors.


Assuntos
Separação Celular/métodos , Terapia Genética/métodos , Transplante de Células-Tronco Hematopoéticas/métodos , Porfiria Hepatoeritropoética/terapia , Animais , Linhagem Celular , DNA Complementar/genética , Modelos Animais de Doenças , Feminino , Ferroquelatase/genética , Citometria de Fluxo , Vetores Genéticos , Hematopoese , Interleucina-3/fisiologia , Hepatopatias/terapia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Fenótipo , Transtornos de Fotossensibilidade/terapia , Porfiria Hepatoeritropoética/fisiopatologia , Retroviridae/genética
6.
Mol Ther ; 3(3): 411-7, 2001 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-11273784

RESUMO

Congenital erythropoietic porphyria (CEP) is an inherited disease due to a deficiency in the uroporphyrinogen III synthase (UROS), the fourth enzyme of the heme pathway. It is characterized by accumulation of uroporphyrin I in the bone marrow, peripheral blood, and other organs. The onset of most cases occurs in infancy and the main symptoms are cutaneous photosensitivity and hemolysis. For severe transfusion-dependent cases, when allogeneic cell transplantation cannot be performed, autografting of genetically modified primitive/stem cells is the only alternative. In the present study, efficient mobilization of peripheral blood primitive CD34(+) cells was performed on a young adult CEP patient. Retroviral transduction of this cell population with the therapeutic human UROS (hUS) gene resulted in both enzymatic and metabolic correction of CD34(+)-derived cells, as demonstrated by the increase in UROS activity and by a 53% drop in porphyrin accumulation. A 10-24% gene transfer efficiency was achieved in the most primitive cells, as demonstrated by the expression of enhanced green fluorescent protein (EGFP) in long-term culture-initiating cells (LTC-IC). Furthermore, gene expression remained stable during in vitro erythroid differentiation. Therefore, these results are promising for the future treatment of CEP patients by gene therapy.


Assuntos
Antígenos CD34/metabolismo , Terapia Genética , Células-Tronco Hematopoéticas/metabolismo , Porfiria Eritropoética/terapia , Retroviridae/genética , Uroporfirinogênio III Sintetase/genética , Antígenos CD34/genética , Medula Óssea/enzimologia , Expressão Gênica , Técnicas de Transferência de Genes , Vetores Genéticos , Humanos , Lentivirus/genética , Porfirinas/metabolismo , Transdução Genética , Células Tumorais Cultivadas
7.
Hepatology ; 32(1): 73-81, 2000 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-10869291

RESUMO

Erythropoietic protoporphyria (EPP) is characterized clinically by cutaneous photosensitivity and biochemically by the accumulation of excessive amounts of protoporphyrin in erythrocytes, plasma, feces, and other tissues, such as the liver. The condition is inherited as an autosomal dominant or recessive trait, with a deficiency of ferrochelatase activity. A major concern in EPP patients is the development of cholestasis with accumulation of protoporphyrin in hepatobiliary structures and progressive cellular damage, which can rapidly lead to fatal hepatic failure. The availability of a mouse model for the disease, the Fech(m1Pas)/Fech(m1Pas) mutant mouse, allowed us to test a cellular therapy protocol to correct the porphyric phenotype. When Fech/Fech mice received bone marrow cells from normal animals, the accumulation of protoporphyrin in red blood cells and plasma was reduced 10-fold but still remained 2.5 times above normal levels. Interestingly, in very young animals, bone marrow transplantation can prevent hepatobiliary complications as well as hepatocyte alterations and partially reverse protoporphyrin accumulation in the liver. Bone marrow transplantation may be an option for EPP patients who are at risk of developing hepatic complications.


Assuntos
Transplante de Medula Óssea , Fígado/patologia , Porfiria Eritropoética/terapia , Animais , Feminino , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Porfiria Eritropoética/metabolismo , Porfiria Eritropoética/patologia , Protoporfirinas/biossíntese
8.
J Gene Med ; 2(2): 89-96, 2000.
Artigo em Inglês | MEDLINE | ID: mdl-10809142

RESUMO

BACKGROUND: Local production of therapeutic proteins, e.g. for cancer treatments, is based on gene therapy approaches and requires tight spatial and temporal control of gene expression. Here we demonstrate the use of local hyperthermia of varying intensity and duration to control the expression of a transgene under control of the thermoinducible hsp70 (heat shock protein) promoter. METHODS: Heat-induced expression of the EGFP (green fluorescent protein) reporter gene was characterized using a stably transfected glioma C6 cell line expressing the EGFP gene under control of the heat inducible minimal hsp70 promoter both in vitro and in vivo for subcutaneous tumors in immunodeficient mice. RESULTS: A heat shock of 20-30 min at 43 degrees C in cell culture led to a maximum EGFP concentration at about 24 h. Heat treatments at higher temperature (up to 48 degrees C) but with shorter durations (down to 30 s) also induced strong EGFP expression. Local heating in situ led to gradients in EGFP expression which decreased with increasing distance from the heat source. CONCLUSION: Local hyperthermia, in combination with a heat sensitive promoter, represents a method for the spatial and temporal control of transgene expression.


Assuntos
Regulação da Expressão Gênica , Técnicas de Transferência de Genes , Proteínas de Choque Térmico HSP70/metabolismo , Proteínas Luminescentes/metabolismo , Regiões Promotoras Genéticas , Animais , Western Blotting , Citometria de Fluxo , Genes Reporter , Proteínas de Fluorescência Verde , Calefação , Proteínas Luminescentes/genética , Camundongos , Camundongos Endogâmicos , Ratos , Transfecção , Células Tumorais Cultivadas
9.
J Interferon Cytokine Res ; 19(5): 533-41, 1999 May.
Artigo em Inglês | MEDLINE | ID: mdl-10386866

RESUMO

Gene transduction into immature human hematopoietic cells collected from umbilical cord blood, bone marrow, or mobilized peripheral blood cells could be useful for the treatment of genetic and acquired disorders of the hematopoietic system. Immunodeficient mouse models have been used frequently as recipients to assay the growth and differentiation of human hematopoietic stem/progenitor cells. Indeed, high levels of human cell engraftment were first reported in human/murine chimeras using NOD/SCID mice, which now are considered as the standard for these types of experiments. However, NOD/SCID mice have some clear disadvantages (including spontaneous tumor formation) that limit their general use. We have developed a new immunodeficient mouse model by combining recombinase activating gene-2 (RAG2) and common cytokine receptor gamma chain (gamma c) mutations. The RAG2-/-/gamma c- double mutant mice are completely alymphoid (T-, B-, NK-), show no spontaneous tumor formation, and exhibit normal hematopoietic parameters. Interestingly, human cord blood cell engraftment in RAG2-/-/gamma c- mice was greatly enhanced by the exogenous administration of human cytokines interleukin-(IL-3) granulocyte-macrophage colony-stimulating factor, (GM-CSF), and erythropoietin in contrast to the NOD/SCID model. This unique feature of the RAG2-/-/gamma c- mouse model should be particularly well suited for assessing the role of different cytokines in human lymphopoiesis and stem/progenitor cell function in vivo.


Assuntos
Citocinas/farmacologia , Transplante de Células-Tronco Hematopoéticas , Fragmentos de Peptídeos/genética , Receptores de Citocinas/genética , Imunodeficiência Combinada Severa/genética , Animais , Antígenos CD34/sangue , Proteínas de Ligação a DNA , Modelos Animais de Doenças , Fator Estimulador de Colônias de Granulócitos e Macrófagos/farmacologia , Humanos , Interleucina-3/farmacologia , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Mutação , Proteínas Nucleares , Fenótipo , Receptores de Citocinas/química
10.
Blood ; 94(2): 465-74, 1999 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-10397714

RESUMO

Hepatoerythropoietic porphyria (HEP) is an inherited metabolic disorder characterized by the accumulation of porphyrins resulting from a deficiency in uroporphyrinogen decarboxylase (UROD). This autosomal recessive disorder is severe, starting early in infancy with no specific treatment. Gene therapy would represent a great therapeutic improvement. Because hematopoietic cells are the target for somatic gene therapy in this porphyria, Epstein-Barr virus-transformed B-cell lines from patients with HEP provide a model system for the disease. Thus, retrovirus-mediated expression of UROD was used to restore enzymatic activity in B-cell lines from 3 HEP patients. The potential of gene therapy for the metabolic correction of the disease was demonstrated by a reduction of porphyrin accumulation to the normal level in deficient transduced cells. Mixed culture experiments demonstrated that there is no metabolic cross-correction of deficient cells by normal cells. However, the observation of cellular expansion in vitro and in vivo in immunodeficient mice suggested that genetically corrected cells have a competitive advantage. Finally, to facilitate future human gene therapy trials, we have developed a selection system based on the expression of the therapeutic gene. Genetically corrected cells are easily separated from deficient ones by the absence of fluorescence when illuminated under UV light.


Assuntos
Linfócitos B/enzimologia , Terapia Genética , Porfiria Hepatoeritropoética/enzimologia , Uroporfirinogênio Descarboxilase/deficiência , Animais , Linfócitos B/transplante , Linhagem Celular Transformada , Transformação Celular Viral , Técnicas de Cocultura , Citometria de Fluxo , Herpesvirus Humano 4 , Humanos , Masculino , Camundongos , Camundongos Mutantes , Microscopia de Fluorescência , Porfiria Hepatoeritropoética/genética , Porfiria Hepatoeritropoética/terapia , Seleção Genética , Transfecção , Raios Ultravioleta , Uroporfirinogênio Descarboxilase/genética
11.
Ann Biol Clin (Paris) ; 57(1): 43-50, 1999.
Artigo em Francês | MEDLINE | ID: mdl-9920966

RESUMO

Gene transfer in hematopoietic cells is intended to treat patients with malignant disease and inherited monogenic (hematological, immunological, and metabolic) disorders. Hematopoietic progenitor or stem cells are a favoured target for gene therapy because these cells are easily withdrawn from the patient, expanded and genetically modified ex vivo and then reinjected into the organism. Retroviral vectors allow an efficient transfer of the genes of interest. Transduction of stem cells leads to a stable expression of the transgene for long periods of time. However, we are at the beginning of this new therapeutic application, the technique was being already successful in very few cases. Problems to be solved are mainly in the understanding of the physiology of the hematopoietic stem cell and in the improvement of technical qualities of the vectors for a targeted gene transfer in vivo.


Assuntos
Terapia Genética/métodos , Vírus Defeituosos/genética , Expressão Gênica , Técnicas de Transferência de Genes , Doenças Genéticas Inatas/terapia , Marcadores Genéticos , Vetores Genéticos/uso terapêutico , Transplante de Células-Tronco Hematopoéticas , Humanos , Neoplasias/terapia , Retroviridae
12.
J Gene Med ; 1(5): 322-30, 1999.
Artigo em Inglês | MEDLINE | ID: mdl-10738549

RESUMO

BACKGROUND: Congenital erythropoietic porphyria (CEP) is an inherited disease caused by a deficiency of uroporphyrinogen III synthase, the fourth enzyme of the haem biosynthesis pathway. It is characterized by accumulation of uroporphyrin I in the bone marrow, peripheral blood and other organs. The prognosis of CEP is poor with death occurring in early adult life and available treatments are only symptomatic and unsatisfactory. In vitro gene transfer experiments have documented the feasibility of gene therapy via haematopoietic stem cells to treat this disease. To facilitate future ex vivo gene therapy in humans, the design of efficient selection procedures to increase the frequency of genetically corrected cells prior to autologous transplantation is a critical step. METHODS: An alternative selection procedure based upon expression of a transferred gene was performed on a lymphoblastoid (LB) cell line from a patient with congenital erythropoietic porphyria to obtain high frequencies of genetically modified cells. The presence of exogeneous delta-aminolevulinic acid (ALA), a haem precursor, induces an increase in porphyrin accumulation in LB deficient cells. Porphyrins exhibit a specific fluorescent emission and can be detected by cytofluorimetry under ultraviolet excitation. RESULTS: In genetically modified cells, the restored metabolic flow from ALA to haem led to a lesser accumulation of porphyrins in the cells, which were easily separated from the deficient cells by flow cytometry cell sorting. CONCLUSION: This selection process represents a rapid and efficient procedure and an excellent alternative to the use of potentially harmful gene markers in retroviral vectors.


Assuntos
Terapia Genética , Vetores Genéticos , Porfiria Eritropoética/terapia , Retroviridae/genética , Transdução Genética , Adulto , Ácido Aminolevulínico/farmacologia , Linhagem Celular , Separação Celular , Citometria de Fluxo , Humanos , Linfócitos , Melatonina/farmacologia , Porfiria Eritropoética/genética , Porfiria Eritropoética/metabolismo , Porfirinas/metabolismo
13.
Gene Ther ; 5(4): 556-62, 1998 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-9614582

RESUMO

We have developed an efficient and rapid method to analyze transduction in human hematopoietic cells and to select them. We constructed two retroviral vectors using the recombinant humanized S65T green fluorescent protein (rHGFP) gene. Transduced cells appeared with specific green fluorescence on microscopy or fluorescence-activated cell sorting (FACS) analysis. The rHGFP gene was placed under the control of two different retroviral promotors (LTR) in the LGSN vector and in the SF-GFP vector. Amphotropic retroviruses were tested on NIH/3T3 fibroblasts or human hematopoietic (K562, TF-1) cell lines. Then CD34+ cells isolated from cord blood were infected three times after a 48-h prestimulation with IL-3, IL-6, SCF or with IL-3, IL-6, SCF, GM-CSF, Flt3-L and TPO. After 6 days of expansion, a similar number of total CD34(+)-derived cells, CD34+ cells and CFC was obtained in non-transduced and transduced cells, demonstrating the absence of toxicity of the GFP. A transduction up to 46% in total CD34(+)-derived cells and 21% of CD34+ cells was shown by FACS analysis. These results were confirmed by fluorescence of colonies in methyl-cellulose (up to 36% of CFU-GM and up to 25% of BFU-E). The FACS sorting of GFP cells led to 83-100% of GFP-positive colonies after 2 weeks of methyl-cellulose culture. Moreover, a mean gene transfer efficiency of 8% was also demonstrated in longterm culture initiating cells (LTC-IC). This rapid and efficient method represents a substantial improvement to monitor gene transfer and retroviral expression of various vectors in characterized human hematopoietic cells.


Assuntos
Terapia Genética/métodos , Vetores Genéticos , Células-Tronco Hematopoéticas , Retroviridae , Transfecção , Células Cultivadas , Citometria de Fluxo , Expressão Gênica , Marcadores Genéticos , Proteínas de Fluorescência Verde , Humanos , Proteínas Luminescentes/genética , Microscopia de Fluorescência
14.
Cancer Gene Ther ; 5(6): 390-400, 1998.
Artigo em Inglês | MEDLINE | ID: mdl-9917094

RESUMO

The transfer and expression of cytokine genes into tumor cells is reportedly a valuable approach to improve the antitumor activity of cytokines in various models. Interferon (IFN)-alpha may induce hematological remission in chronic myeloid leukemia (CML) patients, but only a small proportion of patients achieve a sustained, complete cytogenetic remission. We have investigated the possibility of transducing CML cells with the retroviral vector LIalpha2SN, which encodes the IFN-alpha2 gene. We first optimized the transduction efficiency using the CML-derived K562 cell line. A transduction efficiency of 50% and 85% after three and six infections, respectively, was obtained in K562 cells. We then expressed IFN-alpha2 in CML cells by transducing the latter with LIalpha2SN viral particles. The IFN-alpha secretion after three and six infections was 5,400 and 18,000 U/24 hours/10(6) cells for unselected K562 cells and 7,000 and 290 U/24 hours/10(6) cells for CML CD34+ cells at days 4 and 5. Moreover, the major histocompatibility complex class I antigens were overexpressed after infection with LIalpha2SN in both K562 and CML CD34+ cells. The proliferation (in liquid culture) and the cloning efficiency of these CML cells were significantly decreased after LIalpha2SN treatment. By contrast, the proliferation of cord blood CD34+ cells was not affected by transduction with LIalpha2SN. These results demonstrate the transduction efficiency of CML cells and suggest the possibility of CML cell immunotherapy with retroviral gene transfer of different cytokines such as IFN-alpha.


Assuntos
Terapia Genética , Vetores Genéticos , Interferon-alfa/genética , Leucemia Mielogênica Crônica BCR-ABL Positiva/terapia , Retroviridae/genética , Animais , Antígenos CD34/metabolismo , Divisão Celular , Sangue Fetal/imunologia , Citometria de Fluxo , Técnicas de Transferência de Genes , Genes MHC Classe I/efeitos dos fármacos , Humanos , Células K562 , Camundongos , Fatores de Tempo , Transdução Genética
15.
J Inherit Metab Dis ; 20(2): 247-57, 1997 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-9211197

RESUMO

Congenital erythropoietic porphyria (CEP) is an inherited metabolic disorder characterized by an overproduction and accumulation of porphyrins in bone marrow. This autosomal recessive disease results from a deficiency of uroporphyrinogen III synthase (UROIIIS), the fourth enzyme of the haem biosynthetic pathway. It is phenotypically heterogeneous: patients with mild disease have cutaneous involvement, while more severely affected patients are transfusion dependent. The cloning of UROIIIS cDNA and genomic DNA has allowed the molecular characterization of the genetic defect in a number of families. To date, 22 different mutations have been characterized. Allogeneic bone marrow transplantation is the only curative treatment available for the severe, transfusion-dependent, cases. When bone marrow transplantation cannot be performed owing to the absence of a suitable donor, the autografting of genetically modified cells is an appealing alternative. The best approach to somatic gene therapy in this disease involves the use of recombinant retroviral vectors to transduce cells ex vivo, followed by autologous transplantation of the genetically modified cells. We investigated retroviral transfer in deficient human fibroblasts, immortalized lymphoblasts as well as bone marrow cells, and obtained a complete restoration of the enzymatic activity and full metabolic correction. Using K562 cells, an erythroleukaemic cell line, the expression of the transgene remained stable during 3 months and during erythroid differentiation of the cells. Finally, a 1.6- to 1.9-fold increase in enzyme activity compared to the endogenous level was found in normal CD34+ cells, a population of heterogeneous cells known to contain the progenitor/stem cells for long-term expression. The future availability of a mouse model of the disease will permit ex vivo gene therapy experiments on the entire animal.


Assuntos
Técnicas de Transferência de Genes , Terapia Genética , Células-Tronco Hematopoéticas/metabolismo , Porfiria Eritropoética/terapia , Uroporfirinogênio III Sintetase/genética , Células 3T3 , Animais , Antígenos CD34 , DNA Complementar , Células Precursoras Eritroides , Expressão Gênica , Humanos , Camundongos , Transformação Genética , Células Tumorais Cultivadas
17.
Blood ; 85(6): 1449-53, 1995 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-7888667

RESUMO

Congenital erythropoietic porphyria (CEP) is an inherited metabolic disorder resulting from the accumulation of porphyrins because of defective uroporphyrinogen III synthase (UROIIIS). This autosomal recessive disorder is phenotypically heterogeneous with respect to the age of onset and the severity of the symptoms. Different exonic point mutations in the UROIIIS gene have been identified, providing phenotype-genotype correlations in this disease. Severe cases may be treated by bone marrow transplantation and are potential candidates for somatic gene therapy. Epstein-Barr virus-transformed B-cell lines from patients with CEP provide a model system for the disease. We have used retrovirus-mediated expression of UROIIIS to restore enzymatic activity in a B-cell line from a patient. We have also demonstrated the metabolic correction of the disease, ie, porphyrin accumulation into the deficient transduced cells was reduced to the normal level. These data show the potential of gene therapy for this disease.


Assuntos
Terapia Genética , Porfiria Eritropoética/terapia , Retroviridae/genética , Uroporfirinogênio III Sintetase/genética , Linfócitos B/metabolismo , Linhagem Celular Transformada , Técnicas de Transferência de Genes , Herpesvirus Humano 4/genética , Humanos , Porfiria Eritropoética/metabolismo , Porfirinas/metabolismo
18.
Hum Gene Ther ; 6(1): 13-20, 1995 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-7703283

RESUMO

Congenital erythropoietic porphyria (CEP) is a genetic disease characterized by an overproduction and accumulation of porphyrins in bone marrow. The enzyme defect concerns uroporphyrinogen III synthase (UROIIIS), the fourth enzyme of the heme biosynthetic pathway. It is the most severe porphyria and the treatment is largely symptomatic: gene therapy would represent a great therapeutic improvement. As a step toward the development of an effective gene therapy, we have constructed two retroviral vectors, LUSN and pMFG-US (with and without the selectable marker Neo), containing a full-length human cDNA for UROIIIS. Recombinant retroviruses were obtained by transfection of the LUSN or pMFG-US plasmid into the amphotropic packaging cell line psi CRIP. For each construct, three different producing clones were selected for their high titer (LUSN) or for their ability to express the message at a high level (pMFG-US). In vitro amplification of genomic DNA from target tissue demonstrated the presence of vector sequences. Murine fibroblasts infected in vitro expressed the human enzyme efficiently, as indicated by RNA and enzymatic studies. Retroviral-mediated gene transfer was then used to introduce the UROIIIS cDNA into human deficient cells. Enzyme activity was increased from 2% (deficient fibroblasts) to 121-274% of the normal value for the different clones. Transduced cells selected with G418 presented an 18-fold increase in enzyme activity compared to the normal cells. Furthermore, high gene transfer rate into peripheral blood progenitor cells (PBPB) was documented by in vitro amplification (PCR). These results demonstrate the potential usefulness of somatic gene therapy for the treatment of CEP.


Assuntos
Técnicas de Transferência de Genes , Terapia Genética , Porfiria Eritropoética/terapia , Retroviridae/genética , Uroporfirinogênio III Sintetase/genética , Células 3T3 , Animais , Sequência de Bases , Células Cultivadas , Primers do DNA , Humanos , Camundongos , Dados de Sequência Molecular , Porfiria Eritropoética/enzimologia , Células-Tronco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA