Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Epilepsy Behav ; 149: 109509, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37935078

RESUMO

Several studies have shown that the retroinsular and posterior parietal operculum regions play a central role in vestibular processing. Electrical stimulations performed during stereoelectroencephalography (SEEG) in patients with focal drug-resistant epilepsy could contribute to the analysis of this area. Among the 264 SEEGs performed in both an adult and a paediatric epilepsy surgery centre, we retrospectively identified 24 patients (9%) reporting vertigo during electrical stimulations (ES). In seven of them (29% of patients experiencing vertigo during ES), it was evoked by stimulating the retroinsular region. The reported responses were mostly not rotatory sensations but actually illusions of body, limb or limb segment movement. The involved area is limited. Moreover, two patients reported having the same symptoms at the beginning of their seizures starting in the same region. Our case study confirms the pivotal role of the retroinsular and posterior parietal operculum areas in vestibular responses, and we therefore advise the exploration of this region when patients report an illusion of body movement at the beginning of their seizures.


Assuntos
Epilepsia , Neocórtex , Adulto , Criança , Humanos , Córtex Cerebral/fisiologia , Estudos Retrospectivos , Convulsões , Epilepsia/diagnóstico por imagem , Técnicas Estereotáxicas , Vertigem , Eletroencefalografia
2.
Hippocampus ; 33(10): 1113-1122, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37483092

RESUMO

The prevailing view in human cognitive neuroscience associates the medial temporal lobes (MTLs) with declarative memory. Compelling experimental evidence has, however, demonstrated that these regions are specialized according to the representations processed, irrespective of the cognitive domain assessed. This account was supported by the study of patients with bilateral medial temporal amnesia, who exhibit impairments in perceptual tasks involving complex visual stimuli. Yet, little is known regarding the impact of unilateral MTL damage on complex visual abilities. To address this issue, we administered a visual matching task to 20 patients who underwent left (N = 12) or right (N = 8) anterior temporal lobectomy for drug-resistant epilepsy and to 38 healthy controls. Presentation viewpoint was manipulated to increase feature ambiguity, as this is critical to reveal impairments in perceptual tasks. Similar to control participants, patients with left-sided damage succeeded in all task conditions. In contrast, patients with right-sided damage had decreased accuracy compared with that of the other two groups, as well as increased response time. Notably, the accuracy of those with right-sided damage did not exceed chance level when feature ambiguity was high (i.e., when stimuli were presented from different viewpoints) for the most complex classes of stimuli (i.e., scenes and buildings, compared with single objects). The pattern reported in bilateral patients in previous studies was therefore reproduced in patients with right, but not left, resection. These results suggest that the complex visual-representation functions supported by the MTL are right-lateralized, and raise the question as to how the representational account of these regions applies to representations supported by left MTL regions.


Assuntos
Lobectomia Temporal Anterior , Epilepsia do Lobo Temporal , Humanos , Percepção Visual/fisiologia , Lobo Temporal/cirurgia , Lobo Temporal/fisiologia , Amnésia , Tempo de Reação , Imageamento por Ressonância Magnética , Epilepsia do Lobo Temporal/cirurgia , Testes Neuropsicológicos
3.
Sci Immunol ; 8(82): eade2860, 2023 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-37083451

RESUMO

Inborn errors of TLR3-dependent type I IFN immunity in cortical neurons underlie forebrain herpes simplex virus-1 (HSV-1) encephalitis (HSE) due to uncontrolled viral growth and subsequent cell death. We report an otherwise healthy patient with HSE who was compound heterozygous for nonsense (R422*) and frameshift (P493fs9*) RIPK3 variants. Receptor-interacting protein kinase 3 (RIPK3) is a ubiquitous cytoplasmic kinase regulating cell death outcomes, including apoptosis and necroptosis. In vitro, the R422* and P493fs9* RIPK3 proteins impaired cellular apoptosis and necroptosis upon TLR3, TLR4, or TNFR1 stimulation and ZBP1/DAI-mediated necroptotic cell death after HSV-1 infection. The patient's fibroblasts displayed no detectable RIPK3 expression. After TNFR1 or TLR3 stimulation, the patient's cells did not undergo apoptosis or necroptosis. After HSV-1 infection, the cells supported excessive viral growth despite normal induction of antiviral IFN-ß and IFN-stimulated genes (ISGs). This phenotype was, nevertheless, rescued by application of exogenous type I IFN. The patient's human pluripotent stem cell (hPSC)-derived cortical neurons displayed impaired cell death and enhanced viral growth after HSV-1 infection, as did isogenic RIPK3-knockout hPSC-derived cortical neurons. Inherited RIPK3 deficiency therefore confers a predisposition to HSE by impairing the cell death-dependent control of HSV-1 in cortical neurons but not their production of or response to type I IFNs.


Assuntos
Encefalite por Herpes Simples , Herpes Simples , Herpesvirus Humano 1 , Humanos , Morte Celular , Encefalite por Herpes Simples/genética , Herpesvirus Humano 1/metabolismo , Proteína Serina-Treonina Quinases de Interação com Receptores/genética , Receptores Tipo I de Fatores de Necrose Tumoral , Receptor 3 Toll-Like/genética , Receptor 3 Toll-Like/metabolismo
4.
Brain ; 135(Pt 2): 631-40, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22036962

RESUMO

Thanks to the seminal work of Wilder Graves Penfield (1891-1976) at the Montreal Neurological Institute, electrical stimulation is used worldwide to localize the epileptogenic cortex and to map the functionally eloquent areas in the context of epilepsy surgery or lesion resections. In the functional map of elementary and experiential responses he described through >20 years of careful exploration of the human cortex via stimulation of the cortical surface, Penfield did not identify any 'pain cortical area'. We reinvestigated this issue by analysing subjective and videotaped behavioural responses to 4160 cortical stimulations using intracerebral electrodes implanted in all cortical lobes that were carried out over 12 years during the presurgical evaluation of epilepsy in 164 consecutive patients. Pain responses were scarce (1.4%) and concentrated in the medial part of the parietal operculum and neighbouring posterior insula where pain thresholds showed a rostrocaudal decrement. This deep cortical region remained largely inaccessible to the intraoperative stimulation of the cortical surface carried out by Penfield after resection of the parietal operculum. It differs also from primary sensory areas described by Penfield et al. in the sense that, with our stimulation paradigm, pain represented only 10% of responses. Like Penfield et al., we obtained no pain response anywhere else in the cortex, including in regions consistently activated by pain in most functional imaging studies, i.e. the first somatosensory area, the lateral part of the secondary somatosensory area, anterior and mid-cingulate gyri (mid-cingulate cortex), anterior frontal, posterior parietal and supplementary motor areas. The medial parietal operculum and posterior insula are thus the only areas where electrical stimulation is able to trigger activation of the pain cortical network and thus the experience of somatic pain.


Assuntos
Percepção da Dor/fisiologia , Dor/fisiopatologia , Córtex Somatossensorial/fisiopatologia , Adulto , Mapeamento Encefálico , Estimulação Elétrica , Eletrodos Implantados , Feminino , Humanos , Masculino , Pessoa de Meia-Idade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA