Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Radiother Oncol ; 166: 51-57, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34838891

RESUMO

PURPOSE: Quality assurance (QA) practices improve the quality level of oncology trials by ensuring that the protocol is followed and the results are valid and reproducible. This study investigated the utilization of QA among randomized controlled trials that involve radiotherapy (RT). METHODS AND MATERIALS: We searched ClinicalTrials.gov in February 2020 for all phase III oncology randomized clinical trials (RCTs). These trials were screened for RT-specific RCTs that had published primary trial results. Information regarding QA in each trial was collected from the study publications and trial protocol if available. Two individuals independently performed trial screening and data collection. Pearson's Chi-square tests analyses were used to assess factors that were associated with QA inclusion in RT trials. RESULTS: Forty-two RCTs with RT as the primary intervention or as a mandatory component of the protocol were analyzed; the earliest was started in 1994 and one trial was still active though not recruiting. Twenty-nine (69%) trials mandated RT quality assurance (RTQA) practices as part of the trial protocol, with 19 (45%) trials requiring institutional credentialing. Twenty-one (50%) trials published protocol deviation outcomes. Clinical trials involving advanced radiation techniques (IMRT, VMAT, SRS, SBRT) did not include more RTQA than trials without these advanced techniques (73% vs. 65%, p = 0.55). Trials that reported protocol deviation outcomes were associated with mandating RTQA in their protocols as compared to trials that did not report these outcomes (100% vs. 38%, p < 0.001). CONCLUSIONS: There is a lack of RTQA utilization and transparency in RT clinical trials. It is imperative for RT trials to include increased QA for safe, consistent, and high-quality RT planning and delivery.


Assuntos
Neoplasias , Radioterapia (Especialidade) , Credenciamento , Humanos , Neoplasias/radioterapia , Garantia da Qualidade dos Cuidados de Saúde
2.
Int J Radiat Oncol Biol Phys ; 110(5): 1496-1504, 2021 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-33677051

RESUMO

PURPOSE: Young patients, including pediatric, adolescent, and young adult (YA) patients, are most likely to benefit from the reduced integral dose of proton beam radiation therapy (PBT) resulting in fewer late toxicities and secondary malignancies. This study sought to examine insurance approval and appeal outcomes for PBT among YA patients compared with pediatric patients at a large-volume proton therapy center. METHODS AND MATERIALS: We performed a cross-sectional cohort study of 284 consecutive patients aged 0 to 39 years for whom PBT was recommended in 2018 through 2019. Pediatric patients were defined as aged 0 to 18 years and YA patients 19 to 39 years. Rates of approval, denials, and decision timelines were calculated. Tumor type and location were also evaluated as factors that may influence insurance decisions. RESULTS: A total of 207 patients (73%) were approved for PBT at initial request. YA patients (n = 68/143, 48%) were significantly less likely to receive initial approval compared with pediatric patients (n = 139/141; 99%) (P < .001). Even after 47% (n = 35 of 75) of the PBT denials for YA patients were overturned, YAs had a significantly lower final PBT approval (72% vs pediatric 99%; P < .001). The median wait time was also significantly longer for YA patients (median, 8 days; interquartile range [IQR] 3-17 vs median, 2 days; IQR, 0-6; P < .001). In those patients requiring an appeal, the median wait time was 16 days (IQR, 9-25). CONCLUSION: Given the decades of survivorship of YA patients, PBT is an important tool to reduce late toxicities and secondary malignancies. Compared with pediatric patients, YA patients are significantly less likely to receive insurance approval for PBT. Insurance denials and subsequent appeal requests result in significant delays for YA patients. Insurers need to re-examine their policies to include expedited decisions and appeals and removal of arbitrary age cutoffs so that YA patients can gain easier access to PBT. Furthermore, consensus guidelines encouraging greater PBT access for YA may be warranted from both medical societies and/or AYA experts.


Assuntos
Fatores Etários , Acessibilidade aos Serviços de Saúde/estatística & dados numéricos , Cobertura do Seguro/estatística & dados numéricos , Reembolso de Seguro de Saúde , Seguro Saúde/estatística & dados numéricos , Terapia com Prótons/estatística & dados numéricos , Adolescente , Adulto , Neoplasias Encefálicas/radioterapia , Criança , Pré-Escolar , Radiação Cranioespinal/estatística & dados numéricos , Estudos Transversais , Neoplasias de Cabeça e Pescoço/radioterapia , Humanos , Lactente , Recém-Nascido , Seguradoras , Reembolso de Seguro de Saúde/estatística & dados numéricos , Neoplasias Induzidas por Radiação/prevenção & controle , Terapia com Prótons/efeitos adversos , Neoplasias da Coluna Vertebral/radioterapia , Fatores de Tempo , Adulto Jovem
3.
Neuro Oncol ; 23(8): 1337-1347, 2021 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-33647972

RESUMO

BACKGROUND: To determine if proton radiotherapy (PT), compared to intensity-modulated radiotherapy (IMRT), delayed time to cognitive failure in patients with newly diagnosed glioblastoma (GBM). METHODS: Eligible patients were randomized unblinded to PT vs IMRT. The primary endpoint was time to cognitive failure. Secondary endpoints included overall survival (OS), intracranial progression-free survival (PFS), toxicity, and patient-reported outcomes (PROs). RESULTS: A total of 90 patients were enrolled and 67 were evaluable with median follow-up of 48.7 months (range 7.1-66.7). There was no significant difference in time to cognitive failure between treatment arms (HR, 0.88; 95% CI, 0.45-1.75; P = .74). PT was associated with a lower rate of fatigue (24% vs 58%, P = .05), but otherwise, there were no significant differences in PROs at 6 months. There was no difference in PFS (HR, 0.74; 95% CI, 0.44-1.23; P = .24) or OS (HR, 0.86; 95% CI, 0.49-1.50; P = .60). However, PT significantly reduced the radiation dose for nearly all structures analyzed. The average number of grade 2 or higher toxicities was significantly higher in patients who received IMRT (mean 1.15, range 0-6) compared to PT (mean 0.35, range 0-3; P = .02). CONCLUSIONS: In this signal-seeking phase II trial, PT was not associated with a delay in time to cognitive failure but did reduce toxicity and patient-reported fatigue. Larger randomized trials are needed to determine the potential of PT such as dose escalation for GBM and cognitive preservation in patients with lower-grade gliomas with a longer survival time.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Radioterapia de Intensidade Modulada , Neoplasias Encefálicas/radioterapia , Glioblastoma/radioterapia , Humanos , Estudos Prospectivos , Prótons , Radioterapia de Intensidade Modulada/efeitos adversos
4.
Pediatr Blood Cancer ; 68 Suppl 2: e28257, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-32893998

RESUMO

The objectives for the treatment of Wilms tumor in both the Children's Oncology Group (COG) and the International Society of Paediatric Oncology (SIOP) have focused on improving cure rates and minimizing toxicity by limiting the use of radiation and doxorubicin. Although the timing of surgery is different in COG (upfront surgery) and SIOP (upfront chemotherapy with delayed surgery), both are effective strategies and have the same survival. Fewer patients are treated with radiotherapy in the SIOP trials but with higher doses. The prognostic significance of biological markers such as 1q gain and clinical outcomes with novel radiation techniques such as intensity modulated radiation therapy will be determined in upcoming clinical trials. A closer collaboration between COG and SIOP could help promote research and improve the clinical outcomes of children with Wilms tumor.


Assuntos
Neoplasias Renais/terapia , Tumor de Wilms/terapia , Criança , Terapia Combinada , Humanos , Neoplasias Renais/patologia , Prognóstico , Taxa de Sobrevida , Tumor de Wilms/patologia
5.
Adv Radiat Oncol ; 4(2): 362-366, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31011682

RESUMO

PURPOSE: This study aimed to report on the safety, feasibility, and workflow of using magnetic resonance imaging (MRI) simulation, while immobilized in the treatment position, for radiation therapy treatment planning in the pediatric population. METHODS AND MATERIALS: Between May and December 2017, 10 pediatric patients completed both MRI and computed tomography imaging simulation in treatment immobilization for radiation therapy planning for central nervous system disease. We report our initial institutional experience and workflow of the use of MRI simulation in immobilization for treatment planning in this population. RESULTS: Ten pediatric patients successfully underwent MRI and computed tomography imaging simulation for CNS disease. Two patients required anesthesia for sedation during the simulations. From our initial experience, MRI simulation was tolerated by all 10 pediatric patients without any safety or clinical issues, including those who required anesthesia. CONCLUSIONS: Our initial experience supports the use of MRI simulation for radiation treatment planning in the pediatric population, with and without anesthetic sedation, as a safe and feasible image-guidance tool. This is particularly useful in the treatment of pediatric patients because MRI simulation enables superior, soft-tissue, anatomic imaging for a more robust delineation of organs at risk and target volumes without increasing radiation exposure.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA