Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Life Sci Alliance ; 4(5)2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33593923

RESUMO

This study describes two complementary methods that use network-based and sequence similarity tools to identify drug repurposing opportunities predicted to modulate viral proteins. This approach could be rapidly adapted to new and emerging viruses. The first method built and studied a virus-host-physical interaction network; a three-layer multimodal network of drug target proteins, human protein-protein interactions, and viral-host protein-protein interactions. The second method evaluated sequence similarity between viral proteins and other proteins, visualized by constructing a virus-host-similarity interaction network. Methods were validated on the human immunodeficiency virus, hepatitis B, hepatitis C, and human papillomavirus, then deployed on SARS-CoV-2. Comparison of virus-host-physical interaction predictions to known antiviral drugs had AUCs of 0.69, 0.59, 0.78, and 0.67, respectively, reflecting that the scores are predictive of effective drugs. For SARS-CoV-2, 569 candidate drugs were predicted, of which 37 had been included in clinical trials for SARS-CoV-2 (AUC = 0.75, P-value 3.21 × 10-3). As further validation, top-ranked candidate antiviral drugs were analyzed for binding to protein targets in silico; binding scores generated by BindScope indicated a 70% success rate.


Assuntos
Antivirais/uso terapêutico , Tratamento Farmacológico da COVID-19 , Reposicionamento de Medicamentos , SARS-CoV-2/fisiologia , Biologia de Sistemas , Antivirais/farmacologia , Ensaios Clínicos como Assunto , Simulação por Computador , Ontologia Genética , Interações Hospedeiro-Patógeno/efeitos dos fármacos , Humanos , Curva ROC , SARS-CoV-2/efeitos dos fármacos , Proteínas Virais/metabolismo
2.
J Am Chem Soc ; 140(33): 10583-10592, 2018 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-30071734

RESUMO

Continuous wave (CW) pump-probe surface-enhanced Raman spectroscopy (SERS) is used to examine a range of plasmon-driven chemical behavior in the molecular SERS signal of trans-1,2-bis(4-pyridyl)ethylene (BPE) adsorbed on individual Au nanosphere oligomers (viz., dimers, trimers, tetramers, etc.). Well-defined new transient modes are caused by high fluence CW pumping at 532 nm and are monitored on the seconds time scale using a low intensity CW probe field at 785 nm. Comparison of time-dependent density functional theory (TD-DFT) calculations with the experimental data leads to the conclusion that three independent chemical processes are operative: (1) plasmon-driven electron transfer to form the BPE anion radical; (2) BPE hopping between two adsorption sites; and (3) trans-to- cis-BPE isomerization. Resonance Raman and electron paramagnetic resonance (EPR) spectroscopy measurements provide further substantiation for the observation of an anion radical species formed via a plasmon-driven electron transfer reaction. Applications of these findings will greatly impact the design of novel plasmonic devices with the future ability to harness new and efficient energetic pathways for both chemical transformation and photocatalysis at the nanoscale level.

3.
Anal Chem ; 89(20): 10711-10716, 2017 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-28938074

RESUMO

Native electron capture dissociation (NECD) is a process during which proteins undergo fragmentation similar to that from radical dissociation methods, but without the addition of exogenous electrons. However, after three initial reports of NECD from the cytochrome c dimer complex, no further evidence of the effect has been published. Here, we report NECD behavior from horse spleen ferritin, a ∼490 kDa protein complex ∼20-fold larger than the previously studied cytochrome c dimer. Application of front-end infrared excitation (FIRE) in conjunction with low- and high-m/z quadrupole isolation and collisionally activated dissociation (CAD) provides new insights into the NECD mechanism. Additionally, activation of the intact complex in either the electrospray droplet or the gas phase produced c-type fragment ions. Similar to the previously reported results on cytochrome c, these fragment ions form near residues known to interact with iron atoms in solution. By mapping the location of backbone cleavages associated with c-type ions onto the crystal structure, we are able to characterize two distinct iron binding channels that facilitate iron ion transport into the core of the complex. The resulting pathways are in good agreement with previously reported results for iron binding sites in mammalian ferritin.


Assuntos
Ferritinas/metabolismo , Espectrometria de Massas por Ionização por Electrospray/métodos , Baço/metabolismo , Sequência de Aminoácidos , Animais , Citocromos c/química , Citocromos c/metabolismo , Elétrons , Ferritinas/química , Cavalos , Íons/química , Íons/metabolismo , Lasers de Gás
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA