Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
iScience ; 26(7): 107059, 2023 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-37360684

RESUMO

To address the limitation associated with degron based systems, we have developed iTAG, a synthetic tag based on IMiDs/CELMoDs mechanism of action that improves and addresses the limitations of both PROTAC and previous IMiDs/CeLMoDs based tags. Using structural and sequence analysis, we systematically explored native and chimeric degron containing domains (DCDs) and evaluated their ability to induce degradation. We identified the optimal chimeric iTAG(DCD23 60aa) that elicits robust degradation of targets across cell types and subcellular localizations without exhibiting the well documented "hook effect" of PROTAC-based systems. We showed that iTAG can also induce target degradation by murine CRBN and enabled the exploration of natural neo-substrates that can be degraded by murine CRBN. Hence, the iTAG system constitutes a versatile tool to degrade targets across the human and murine proteome.

2.
J Med Chem ; 66(4): 2622-2645, 2023 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-36749938

RESUMO

The existence of multiple centrosomes in some cancer cells can lead to cell death through the formation of multipolar mitotic spindles and consequent aberrant cell division. Many cancer cells rely on HSET (KIFC1) to cluster the extra centrosomes into two groups to mimic the bipolar spindle formation of non-centrosome-amplified cells and ensure their survival. Here, we report the discovery of a novel 2-(3-benzamidopropanamido)thiazole-5-carboxylate with micromolar in vitro inhibition of HSET (KIFC1) through high-throughput screening and its progression to ATP-competitive compounds with nanomolar biochemical potency and high selectivity against the opposing mitotic kinesin Eg5. Induction of the multipolar phenotype was shown in centrosome-amplified human cancer cells treated with these inhibitors. In addition, a suitable linker position was identified to allow the synthesis of both fluorescent- and trans-cyclooctene (TCO)-tagged probes, which demonstrated direct compound binding to the HSET protein and confirmed target engagement in cells, through a click-chemistry approach.


Assuntos
Cinesinas , Tiazóis , Humanos , Linhagem Celular Tumoral , Centrossomo/metabolismo , Cinesinas/antagonistas & inibidores , Cinesinas/genética , Cinesinas/metabolismo , Mitose , Fuso Acromático/metabolismo , Tiazóis/química , Tiazóis/farmacologia
3.
Sci Rep ; 12(1): 18633, 2022 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-36329085

RESUMO

By suppressing gene transcription through the recruitment of corepressor proteins, B-cell lymphoma 6 (BCL6) protein controls a transcriptional network required for the formation and maintenance of B-cell germinal centres. As BCL6 deregulation is implicated in the development of Diffuse Large B-Cell Lymphoma, we sought to discover novel small molecule inhibitors that disrupt the BCL6-corepressor protein-protein interaction (PPI). Here we report our hit finding and compound optimisation strategies, which provide insight into the multi-faceted orthogonal approaches that are needed to tackle this challenging PPI with small molecule inhibitors. Using a 1536-well plate fluorescence polarisation high throughput screen we identified multiple hit series, which were followed up by hit confirmation using a thermal shift assay, surface plasmon resonance and ligand-observed NMR. We determined X-ray structures of BCL6 bound to compounds from nine different series, enabling a structure-based drug design approach to improve their weak biochemical potency. We developed a time-resolved fluorescence energy transfer biochemical assay and a nano bioluminescence resonance energy transfer cellular assay to monitor cellular activity during compound optimisation. This workflow led to the discovery of novel inhibitors with respective biochemical and cellular potencies (IC50s) in the sub-micromolar and low micromolar range.


Assuntos
Linfoma Difuso de Grandes Células B , Humanos , Cristalografia por Raios X , Proteínas Proto-Oncogênicas c-bcl-6/metabolismo , Linfoma Difuso de Grandes Células B/patologia , Desenho de Fármacos , Ligantes
4.
J Med Chem ; 65(12): 8169-8190, 2022 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-35657291

RESUMO

To identify new chemical series with enhanced binding affinity to the BTB domain of B-cell lymphoma 6 protein, we targeted a subpocket adjacent to Val18. With no opportunities for strong polar interactions, we focused on attaining close shape complementarity by ring fusion onto our quinolinone lead series. Following exploration of different sized rings, we identified a conformationally restricted core which optimally filled the available space, leading to potent BCL6 inhibitors. Through X-ray structure-guided design, combined with efficient synthetic chemistry to make the resulting novel core structures, a >300-fold improvement in activity was obtained by the addition of seven heavy atoms.


Assuntos
Domínio BTB-POZ , Ligação Proteica , Proteínas Proto-Oncogênicas c-bcl-6
5.
J Med Chem ; 64(23): 17079-17097, 2021 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-34846884

RESUMO

We describe the optimization of modestly active starting points to potent inhibitors of BCL6 by growing into a subpocket, which was occupied by a network of five stably bound water molecules. Identifying potent inhibitors required not only forming new interactions in the subpocket but also perturbing the water network in a productive, potency-increasing fashion while controlling the physicochemical properties. We achieved this goal in a sequential manner by systematically probing the pocket and the water network, ultimately achieving a 100-fold improvement of activity. The most potent compounds displaced three of the five initial water molecules and formed hydrogen bonds with the remaining two. Compound 25 showed a promising profile for a lead compound with submicromolar inhibition of BCL6 in cells and satisfactory pharmacokinetic (PK) properties. Our work highlights the importance of finding productive ways to perturb existing water networks when growing into solvent-filled protein pockets.


Assuntos
Antineoplásicos/farmacologia , Proteínas Proto-Oncogênicas c-bcl-6/antagonistas & inibidores , Antineoplásicos/química , Cristalografia por Raios X , Desenho de Fármacos , Humanos , Ligação de Hidrogênio , Solubilidade , Relação Estrutura-Atividade
6.
J Med Chem ; 63(8): 4047-4068, 2020 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-32275432

RESUMO

Deregulation of the transcriptional repressor BCL6 enables tumorigenesis of germinal center B-cells, and hence BCL6 has been proposed as a therapeutic target for the treatment of diffuse large B-cell lymphoma (DLBCL). Herein we report the discovery of a series of benzimidazolone inhibitors of the protein-protein interaction between BCL6 and its co-repressors. A subset of these inhibitors were found to cause rapid degradation of BCL6, and optimization of pharmacokinetic properties led to the discovery of 5-((5-chloro-2-((3R,5S)-4,4-difluoro-3,5-dimethylpiperidin-1-yl)pyrimidin-4-yl)amino)-3-(3-hydroxy-3-methylbutyl)-1-methyl-1,3-dihydro-2H-benzo[d]imidazol-2-one (CCT369260), which reduces BCL6 levels in a lymphoma xenograft mouse model following oral dosing.


Assuntos
Benzimidazóis/administração & dosagem , Benzimidazóis/química , Sistemas de Liberação de Medicamentos/métodos , Descoberta de Drogas/métodos , Proteínas Proto-Oncogênicas c-bcl-6/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-bcl-6/metabolismo , Animais , Linhagem Celular Tumoral , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos SCID , Microssomos Hepáticos/efeitos dos fármacos , Microssomos Hepáticos/metabolismo , Estrutura Terciária de Proteína , Ratos , Ratos Sprague-Dawley , Ensaios Antitumorais Modelo de Xenoenxerto/métodos
7.
Oncotarget ; 4(10): 1647-61, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24072592

RESUMO

The ribosomal P70 S6 kinases play a crucial role in PI3K/mTOR regulated signalling pathways and are therefore potential targets for the treatment of a variety of diseases including diabetes and cancer. In this study we describe the identification of three series of chemically distinct S6K1 inhibitors. In addition, we report a novel PKA-S6K1 chimeric protein with five mutations in or near its ATP-binding site, which was used to determine the binding mode of two of the three inhibitor series, and provided a robust system to aid the optimisation of the oxadiazole-substituted benzimidazole inhibitor series. We show that the resulting oxadiazole-substituted aza-benzimidazole is a potent and ligand efficient S6 kinase inhibitor, which blocks the phosphorylation of RPS6 at Ser235/236 in TSC negative HCV29 human bladder cancer cells by inhibiting S6 kinase activity and thus provides a useful tool compound to investigate the function of S6 kinases.


Assuntos
Inibidores de Proteínas Quinases/farmacologia , Proteínas Quinases S6 Ribossômicas 90-kDa/antagonistas & inibidores , Linhagem Celular Tumoral , Proteínas Quinases Dependentes de AMP Cíclico/antagonistas & inibidores , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Desenho de Fármacos , Ensaios de Triagem em Larga Escala/métodos , Humanos , Imidazóis/química , Imidazóis/farmacologia , Modelos Moleculares , Fosforilação , Inibidores de Proteínas Quinases/química , Proteínas Recombinantes de Fusão/química , Proteínas Quinases S6 Ribossômicas 90-kDa/metabolismo , Transdução de Sinais , Relação Estrutura-Atividade , Neoplasias da Bexiga Urinária/tratamento farmacológico , Neoplasias da Bexiga Urinária/enzimologia
8.
J Biomol Screen ; 18(3): 298-308, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23139381

RESUMO

Inositol-requiring enzyme 1 alpha (IRE1α) is a transmembrane sensor protein with both kinase and ribonuclease activity, which plays a crucial role in the unfolded protein response (UPR). Protein misfolding in the endoplasmic reticulum (ER) lumen triggers dimerization and subsequent trans-autophosphorylation of IRE1α. This leads to the activation of its endoribonuclease (RNase) domain and splicing of the mRNA of the transcriptional activator XBP1, ultimately generating an active XBP1 (XBP1s) implicated in multiple myeloma survival. Previously, we have identified human IRE1α as a target for the development of kinase inhibitors that could modulate the UPR in human cells, which has particular relevance for multiple myeloma and other secretory malignancies. Here we describe the development and validation of a 384-well high-throughput screening assay using DELFIA technology that is specific for IRE1α autophosphorylation. Using this format, a focused library of 2312 potential kinase inhibitors was screened, and several novel IRE1α kinase inhibitor scaffolds were identified that could potentially be developed toward new therapies to treat multiple myeloma.


Assuntos
Endorribonucleases/antagonistas & inibidores , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacologia , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Animais , Linhagem Celular , Endorribonucleases/química , Endorribonucleases/metabolismo , Ensaios de Triagem em Larga Escala/métodos , Humanos , Insetos , Proteínas de Membrana/antagonistas & inibidores , Proteínas de Membrana/metabolismo , Mieloma Múltiplo/tratamento farmacológico , Mieloma Múltiplo/enzimologia , Mieloma Múltiplo/metabolismo , Fosforilação/efeitos dos fármacos , Dobramento de Proteína/efeitos dos fármacos , Proteínas Serina-Treonina Quinases/química , Proteínas Serina-Treonina Quinases/metabolismo , Resposta a Proteínas não Dobradas/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA