Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Anal Biochem ; 350(2): 171-6, 2006 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-16476404

RESUMO

Deuterium-labeled water (2H2O) has emerged as a novel isotope tracer. Following the administration of 2H2O, it is possible to study the dynamics of carbohydrate, protein, lipid, and DNA and to determine body composition. Those studies require reliable measurements of the 2H labeling of water. Although simple gas chromatography-mass spectrometry (GC-MS) methods have been developed for measuring the 2H enrichment of biological fluids, investigators have not reported on the intra- and/or interdaily variability of the measurements. We have experimentally examined the reproducibility of one GC-MS method for measuring the 2H labeling of water. Briefly, hydrogen (deuterium) atoms in water were exchanged with those bound to acetone, and the 2H labeling of acetone was then determined under electron impact ionization. We found that the coefficient of variation is generally less than 0.5% when water is labeled between 0 and 2.8 mole percentage excess 2H. We demonstrated that this highly reproducible result allows one to use 2H2O and the "acetone method" to measure physiological parameters such as body composition in mice.


Assuntos
Composição Corporal , Tecido Adiposo/anatomia & histologia , Envelhecimento/fisiologia , Animais , Composição Corporal/fisiologia , Água Corporal/química , Deutério , Cromatografia Gasosa-Espectrometria de Massas , Marcação por Isótopo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Reprodutibilidade dos Testes
2.
Metab Eng ; 6(1): 25-35, 2004 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-14734253

RESUMO

The application of isotope tracers for investigating metabolism in mice is discussed. To familiarize the reader, some basic principles regarding the use of tracer methods are outlined. Emphasis is placed on showing how investigators are using isotope tracers to study the regulation of carbohydrate, fat and/or protein turnover in vivo. Finally, some of the advantages of using labeled water (i.e., 2H(2)O and/or H(2)18O) to trace the kinetics of biological processes are considered. The background provided in this report should assist engineers in designing studies that enhance our understanding of conditions in which metabolism is altered (e.g., diabetes, cancer cachexia, failure to thrive and travel at zero-gravity).


Assuntos
Deutério/metabolismo , Gluconeogênese , Modelos Biológicos , Animais , Marcação por Isótopo , Camundongos
3.
Am J Physiol Endocrinol Metab ; 284(5): E1043-8, 2003 May.
Artigo em Inglês | MEDLINE | ID: mdl-12582010

RESUMO

The contribution of gluconeogenesis to glucose production can be measured by enriching body water with (2)H(2)O to approximately 0.5% (2)H and determining the ratio of (2)H that is bound to carbon-5 vs. carbon-2 of blood glucose. This labeling ratio can be measured using gas chromatography-mass spectrometry after the corresponding glucose carbons are converted to formaldehyde and then to hexamethylenetetramine (HMT). We present a technique for integrating ion chromatograms that allows one to use only 0.05% (2)H in body water (i.e., 10 times less than the current dose). This technique takes advantage of the difference in gas chromatographic retention times of naturally labeled HMT and [(2)H]HMT. We discuss the advantage(s) of using a low dose of (2)H(2)O to quantify the contribution of gluconeogenesis.


Assuntos
Óxido de Deutério/administração & dosagem , Gluconeogênese , Animais , Isótopos de Carbono , Fracionamento Químico , Deutério , Relação Dose-Resposta a Droga , Cromatografia Gasosa-Espectrometria de Massas , Masculino , Metenamina , Ratos , Ratos Sprague-Dawley
4.
Anal Biochem ; 306(2): 278-82, 2002 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-12123666

RESUMO

We have developed an assay for determining the 18O enrichment of water in biological fluids. Urine, plasma, or whole blood is reacted with phosphorous pentachloride to yield phosphoric acid. Derivatization of phosphoric acid with diazomethane generates trimethyl phosphate. The enrichment of trimethyl phosphate is nearly four times that of water and is assayed using gas chromatography-mass spectrometry (electron impact ionization). Yang et al. (1998, Anal. Biochem. 258, 315-321) assayed the 2H enrichment of body water after exchange with acetone, by gas chromatography-mass spectrometry. The combination of our 18O method and the 2H method of Yang et al. allows one to measure energy expenditure via "doubly labeled" water (2H(2)O + H(2)18O), using small samples of body fluids. These techniques were used to measure energy expenditure in mice, in which the 18O enrichment of body water can be monitored down to 0.025%.


Assuntos
Cromatografia Gasosa-Espectrometria de Massas , Organofosfatos/metabolismo , Isótopos de Oxigênio/metabolismo , Água/metabolismo , Animais , Metabolismo Energético , Masculino , Camundongos , Isótopos de Oxigênio/sangue , Isótopos de Oxigênio/urina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA