Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Bone Miner Res ; 39(11): 1633-1643, 2024 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-39173022

RESUMO

Extracellular vesicles (EVs) are key mediators of cell-cell communication and are involved in transferring specific biomolecular cargo to recipient cells to regulate their physiological functions. A major challenge in the understanding of EV function in vivo is the difficulty ascertaining the origin of the EV particles. The recent development of the "Snorkel-tag," which includes EV-membrane-targeted CD81 fused to a series of extra-vesicular protein tags, can be used to mark EVs originating from a specific source for subsequent isolation and characterization. We developed an in vivo mouse model, termed "CAGS-Snorkel," which expresses the Snorkel-tag under the control of the Cre-lox system, and crossed this mouse with either Prx1-Cre (mesenchymal progenitors) or Ocn-Cre (osteoblasts/osteocytes) and isolated Snorkel-tagged EVs from the mouse bone marrow plasma using a magnetic bead affinity column. miRNA-sequencing was performed on the isolated EVs, and although similar profiles were observed, a few key miRNAs involved in bone metabolism (miR-106b-5p, miRs-19b-3p, and miRs-219a-5p) were enriched in the Ocn-derived relative to the Prx1-derived EV subpopulations. To characterize the effects of these small EVs on a bone cell target, cultured mouse bone marrow stromal cells were treated with Prx1 or Ocn EVs, and mRNA-sequencing was performed. Pathways involved in ossification, bone development, and extracellular matrix interactions were regulated by both EV subpopulations, whereas a few pathways including advanced glycation end-products signaling were uniquely regulated in the Ocn EV subpopulation, underlying important biological effects of specific EV subpopulations within the bone marrow microenvironment. These data demonstrate that EV isolation in vivo using the CAGS-Snorkel mouse model is a useful tool in characterizing the cargo and understanding the biology of tissue-specific EVs. Moreover, while bone mesenchymal cell populations share a common EV secretory profile, we uncover key differences based on the stage of osteoblastic differentiation that may have important biological consequences.


Extracellular vesicles (EVs) are small, lipid-based particles that are produced by all cells in the body, and function as a method of communication among different cells in a particular microenvironment. However, identification of the source of the EVs is difficult following export from the cell where the EV is produced. To facilitate the identification and characterization of the active molecules contained within EVs from a particular cell-type, we developed a new mouse model (CAGS-Snorkel) which allows for the identification of the EV source cell using specific protein molecules on the EVs in only one particular cell- or tissue-type. As a proof-of-principle, we compared the microRNA EV cargo in cells from early bone cell progenitors and mature bone cells in the bone marrow microenvironment. We find that a number of microRNAs, molecules involved in the function and regulation of cellular processes, are expressed both in common and specifically within those two cell types. Notably, when purified EV subpopulations from these cell types were used to treat bone cell cultures, we find both common and unique gene expression and molecular pathway profiles. This work describes a new mouse model that will be useful in understanding how EVs function to carry important cellular information.


Assuntos
Vesículas Extracelulares , Células-Tronco Mesenquimais , MicroRNAs , Animais , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/citologia , Vesículas Extracelulares/metabolismo , Camundongos , MicroRNAs/metabolismo , MicroRNAs/genética , Osso e Ossos/metabolismo , Osteoblastos/metabolismo , Modelos Animais , Proteínas de Homeodomínio/metabolismo , Proteínas de Homeodomínio/genética
2.
Cancers (Basel) ; 16(13)2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-39001512

RESUMO

Chronic lymphocytic leukemia (CLL) is characterized by multiple copy number alterations (CNAs) and somatic mutations that are central to disease prognosis, risk stratification, and mechanisms of therapy resistance. Fluorescence in situ hybridization (FISH) panels are widely used in clinical applications as the gold standard for screening prognostic chromosomal abnormalities in CLL. DNA sequencing is an alternative approach to identifying CNAs but is not an established method for clinical CNA screening. We sequenced DNA from 509 individuals with CLL or monoclonal B-cell lymphocytosis (MBL), the precursor to CLL, using a targeted sequencing panel of 59 recurrently mutated genes in CLL and additional amplicons across regions affected by clinically relevant CNAs [i.e., del(17p), del(11q), del(13q), and trisomy 12]. We used the PatternCNV algorithm to call CNA and compared the concordance of calling clinically relevant CNAs by targeted sequencing to that of FISH. We found a high accuracy of calling CNAs via sequencing compared to FISH. With FISH as the gold standard, the specificity of targeted sequencing was >95%, sensitivity was >86%, positive predictive value was >90%, and negative predictive value was >84% across the clinically relevant CNAs. Using targeted sequencing, we were also able to identify other common CLL-associated CNAs, including del(6q), del(14q), and gain 8q, as well as complex karyotype, defined as the presence of 3 or more chromosomal abnormalities, in 26 patients. In a single and cost-effective assay that can be performed on stored DNA samples, targeted sequencing can simultaneously detect CNAs, somatic mutations, and complex karyotypes, which are all important prognostic features in CLL.

3.
J Hepatol ; 81(1): 120-134, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38428643

RESUMO

BACKGROUND & AIMS: The PTEN-AKT pathway is frequently altered in extrahepatic cholangiocarcinoma (eCCA). We aimed to evaluate the role of PTEN in the pathogenesis of eCCA and identify novel therapeutic targets for this disease. METHODS: The Pten gene was genetically deleted using the Cre-loxp system in biliary epithelial cells. The pathologies were evaluated both macroscopically and histologically. The characteristics were further analyzed by immunohistochemistry, reverse-transcription PCR, cell culture, and RNA sequencing. Some features were compared to those in human eCCA samples. Further mechanistic studies utilized the conditional knockout of Trp53 and Aurora kinase A (Aurka) genes. We also tested the effectiveness of an Aurka inhibitor. RESULTS: We observed that genetic deletion of the Pten gene in the extrahepatic biliary epithelium and peri-ductal glands initiated sclerosing cholangitis-like lesions in mice, resulting in enlarged and distorted extrahepatic bile ducts in mice as early as 1 month after birth. Histologically, these lesions exhibited increased epithelial proliferation, inflammatory cell infiltration, and fibrosis. With aging, the lesions progressed from low-grade dysplasia to invasive carcinoma. Trp53 inactivation further accelerated disease progression, potentially by downregulating senescence. Further mechanistic studies showed that both human and mouse eCCA showed high expression of AURKA. Notably, the genetic deletion of Aurka completely eliminated Pten deficiency-induced extrahepatic bile duct lesions. Furthermore, pharmacological inhibition of Aurka alleviated disease progression. CONCLUSIONS: Pten deficiency in extrahepatic cholangiocytes and peribiliary glands led to a cholangitis-to-cholangiocarcinoma continuum that was dependent on Aurka. These findings offer new insights into preventive and therapeutic interventions for extrahepatic CCA. IMPACT AND IMPLICATIONS: The aberrant PTEN-PI3K-AKT signaling pathway is commonly observed in human extrahepatic cholangiocarcinoma (eCCA), a disease with a poor prognosis. In our study, we developed a mouse model mimicking cholangitis to eCCA progression by conditionally deleting the Pten gene via Pdx1-Cre in epithelial cells and peribiliary glands of the extrahepatic biliary duct. The conditional Pten deletion in these cells led to cholangitis, which gradually advanced to dysplasia, ultimately resulting in eCCA. The loss of Pten heightened Akt signaling, cell proliferation, inflammation, fibrosis, DNA damage, epigenetic signaling, epithelial-mesenchymal transition, cell dysplasia, and cellular senescence. Genetic deletion or pharmacological inhibition of Aurka successfully halted disease progression. This model will be valuable for testing novel therapies and unraveling the mechanisms of eCCA tumorigenesis.


Assuntos
Aurora Quinase A , Neoplasias dos Ductos Biliares , Colangiocarcinoma , PTEN Fosfo-Hidrolase , PTEN Fosfo-Hidrolase/genética , PTEN Fosfo-Hidrolase/metabolismo , Animais , Aurora Quinase A/genética , Aurora Quinase A/metabolismo , Colangiocarcinoma/etiologia , Colangiocarcinoma/patologia , Colangiocarcinoma/genética , Colangiocarcinoma/metabolismo , Camundongos , Neoplasias dos Ductos Biliares/patologia , Neoplasias dos Ductos Biliares/genética , Neoplasias dos Ductos Biliares/etiologia , Neoplasias dos Ductos Biliares/metabolismo , Humanos , Camundongos Knockout , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Ductos Biliares Extra-Hepáticos/patologia , Modelos Animais de Doenças , Colangite/patologia , Colangite/etiologia , Colangite/metabolismo , Colangite/genética , Transdução de Sinais
4.
Mod Pathol ; 36(9): 100246, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37307874

RESUMO

Lipoblastoma-like tumor (LLT) is a benign soft tissue tumor demonstrating mixed morphologic features of lipoblastoma, myxoid liposarcoma, and spindle cell lipoma but lacking genetic alterations associated with those tumors. LLT was originally thought to be specific to the vulva but has since been reported in the paratesticular region. The morphologic features of LLT overlap with those of "fibrosarcoma-like lipomatous neoplasm" (FLLN), a rare, indolent adipocytic neoplasm considered by some to form part of the spectrum of atypical spindle cell and pleomorphic lipomatous tumor. We compared the morphologic, immunohistochemical, and genetic features of 23 tumors previously classified as LLT (n = 17) and FLLN (n = 6). The 23 tumors occurred in 13 women and 10 men (mean age, 42 years; range, 17 to 80 years). Eighteen (78%) cases arose in the inguinogenital region, whereas 5 tumors (22%) involved noninguinogenital soft tissue, including the flank (n = 1), shoulder (n = 1), foot (n = 1), forearm (n = 1), and chest wall (n = 1). Microscopically, the tumors were lobulated and septated, with variably collagenized fibromyxoid stroma, prominent thin-walled vessels, scattered univacuolated or bivacuolated lipoblasts, and a minor component of mature adipose tissue. Using immunohistochemistry, 5 tumors (42%) showed complete RB1 loss, with partial loss in 7 cases (58%). RNA sequencing, chromosomal microarray, and DNA next-generation sequencing study results were negative for significant alterations. There were no clinical, morphologic, immunohistochemical, or molecular genetic differences between cases previously classified as LLT or FLLN. Clinical follow-up (11 patients [48%]; range, 2-276 months; mean, 48.2 months) showed all patients were alive without disease, and only one patient had experienced a single local recurrence. We conclude that LLT and FLLN represent the same entity, for which "LLT" seems most appropriate. LLT may occur in either sex and any superficial soft tissue location. Careful morphologic study and appropriate ancillary testing should allow for the distinction of LLT from its potential mimics.


Assuntos
Fibrossarcoma , Lipoblastoma , Lipoma , Lipossarcoma Mixoide , Lipossarcoma , Masculino , Adulto , Humanos , Feminino , Lipoblastoma/genética , Biomarcadores Tumorais/genética , Lipoma/genética , Lipoma/patologia , Lipossarcoma/genética , Biologia Molecular
5.
Blood Adv ; 7(13): 3169-3179, 2023 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-36877634

RESUMO

TP53 aberrations, including mutations and deletion of 17p13, are important adverse prognostic markers in chronic lymphocytic leukemia (CLL) but are less studied in high count monoclonal B-cell lymphocytosis (HCMBL), an asymptomatic pre-malignant stage of CLL. Here we estimated the prevalence and impact of TP53 aberrations in 1,230 newly diagnosed treatment-naïve individuals (849 CLL, 381 HCMBL). We defined TP53 state as: wild-type (no TP53 mutations and normal 17p), single-hit (del(17p) or one TP53 mutation), or multi-hit (TP53 mutation and del(17p), TP53 mutation and loss of heterozygosity, or multiple TP53 mutations). Cox regression was used to estimate hazard ratios (HR) and 95% confidence intervals (CI) for time to first treatment and overall survival by TP53 state. We found 64 (7.5%) CLL patients and 17 (4.5%) HCMBL individuals had TP53 mutations with variant allele fraction >10%. Del(17p) was present in 58 (6.8%) of CLL and 11 (2.9%) of HCMBL cases. Most individuals had wild-type (N=1,128, 91.7%) TP53 state, followed by multi-hit (N=55, 4.5%) and then single-hit (N=47, 3.8%) TP53 state. The risk of shorter time to therapy and death increased with the number of TP53 abnormalities. Compared to wild-type patients, multi-hit patients had 3-fold and single-hit patients had 1.5-fold increased risk of requiring therapy. Multi-hit patients also had 2.9-fold increased risk of death compared to wild-type. These results remained stable after accounting for other known poor prognostic factors. Both TP53 mutations and del(17p) may provide important prognostic information for HCMBL and CLL that would be missed if only one were measured.


Assuntos
Leucemia Linfocítica Crônica de Células B , Humanos , Leucemia Linfocítica Crônica de Células B/diagnóstico , Leucemia Linfocítica Crônica de Células B/genética , Leucemia Linfocítica Crônica de Células B/terapia , Proteína Supressora de Tumor p53/genética , Prognóstico , Mutação , Deleção Cromossômica
6.
J Hepatol ; 78(1): 142-152, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36162702

RESUMO

BACKGROUND & AIMS: There is an unmet need to develop novel, effective medical therapies for cholangiocarcinoma (CCA). The Hippo pathway effector, Yes-associated protein (YAP), is oncogenic in CCA, but has historically been difficult to target therapeutically. Recently, we described a novel role for the LCK proto-oncogene, Src family tyrosine kinase (LCK) in activating YAP through tyrosine phosphorylation. This led to the hypothesis that LCK is a viable therapeutic target in CCA via regulation of YAP activity. METHODS: A novel tyrosine kinase inhibitor with relative selectivity for LCK, NTRC 0652-0, was pharmacodynamically profiled in vitro and in CCA cells. A panel of eight CCA patient-derived organoids were characterized and tested for sensitivity to NTRC 0652-0. Two patient-derived xenograft models bearing fibroblast growth factor receptor 2 (FGFR2)-rearrangements were utilized for in vivo assessment of pharmacokinetics, toxicity, and efficacy. RESULTS: NTRC 0652-0 demonstrated selectivity for LCK inhibition in vitro and in CCA cells. LCK inhibition with NTRC 0652-0 led to decreased tyrosine phosphorylation, nuclear localization, and co-transcriptional activity of YAP, and resulted in apoptotic cell death in CCA cell lines. A subset of tested patient-derived organoids demonstrated sensitivity to NTRC 0652-0. CCAs with FGFR2 fusions were identified as a potentially susceptible and clinically relevant genetic subset. In patient-derived xenograft models of FGFR2 fusion-positive CCA, daily oral treatment with NTRC 0652-0 resulted in stable plasma and tumor drug levels, acceptable toxicity, decreased YAP tyrosine phosphorylation, and significantly decreased tumor growth. CONCLUSIONS: A novel LCK inhibitor, NTRC 0652-0, inhibited YAP signaling and demonstrated preclinical efficacy in CCA cell lines, and patient-derived organoid and xenograft models. IMPACT AND IMPLICATIONS: Although aberrant YAP activation is frequently seen in CCA, YAP targeted therapies are not yet clinically available. Herein we show that a novel LCK-selective tyrosine kinase inhibitor (NTRC 0652-0) effectively inhibits YAP tyrosine phosphorylation and cotranscriptional activity and is well tolerated and cytotoxic in multiple preclinical models. The data suggest this approach may be effective in CCA with YAP dependence or FGFR2 fusions, and these findings warrant further investigation in phase I clinical trials.


Assuntos
Neoplasias dos Ductos Biliares , Colangiocarcinoma , Humanos , Neoplasias dos Ductos Biliares/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Fosfoproteínas/genética , Fatores de Transcrição/metabolismo , Regulação Neoplásica da Expressão Gênica , Proteínas de Sinalização YAP , Colangiocarcinoma/genética , Ductos Biliares Intra-Hepáticos/patologia , Tirosina/genética , Tirosina/metabolismo , Tirosina/uso terapêutico , Linhagem Celular Tumoral
7.
JCI Insight ; 7(15)2022 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-35763355

RESUMO

Disrupted liver regeneration following hepatectomy represents an "undruggable" clinical challenge associated with poor patient outcomes. Yes-associated protein (YAP), a transcriptional coactivator that is repressed by the Hippo pathway, is instrumental in liver regeneration. We have previously described an alternative, Hippo-independent mechanism of YAP activation mediated by downregulation of protein tyrosine phosphatase nonreceptor type 11 (PTPN11, also known as SHP2) inhibition. Herein, we examined the effects of YAP activation with a selective SHP1/SHP2 inhibitor, NSC-87877, on liver regeneration in murine partial hepatectomy models. In our studies, NSC-87877 led to accelerated hepatocyte proliferation, improved liver regeneration, and decreased markers of injury following partial hepatectomy. The effects of NSC-87877 were lost in mice with hepatocyte-specific Yap/Taz deletion, and this demonstrated dependence on these molecules for the enhanced regenerative response. Furthermore, administration of NSC-87877 to murine models of nonalcoholic steatohepatitis was associated with improved survival and decreased markers of injury after hepatectomy. Evaluation of transcriptomic changes in the context of NSC-87877 administration revealed reduction in fibrotic signaling and augmentation of cell cycle signaling. Cytoprotective changes included downregulation of Nr4a1, an apoptosis inducer. Collectively, the data suggest that SHP2 inhibition induces a pro-proliferative and cytoprotective enhancement of liver regeneration dependent on YAP.


Assuntos
Hepatectomia , Regeneração Hepática , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Fígado/metabolismo , Regeneração Hepática/fisiologia , Camundongos , Proteínas de Sinalização YAP
8.
Hum Pathol ; 119: 15-27, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34592239

RESUMO

Beta-catenin (CTNNB1) is commonly mutated in hepatocellular carcinoma (HCC). CTNNB1-mutated HCC has important clinical correlates, such as being immune cold and less likely to respond to immune checkpoint inhibitor therapies. It remains unclear, however, if they are a morphologically homogenous group of tumors. To better understand the association between the morphology, CTNNB1 mutations, and other molecular features, a detailed study of 338 The Cancer Genome Atlas cases was performed. A characteristic histological morphology was strongly associated with CTNNB1 mutations but was present in only 58% of CTNNB1-mutated HCCs. Tumors with APC mutations tended to have the classic morphology; those with AXIN mutations did not. Pseudoglands are a key feature of the classic morphology, and they were associated with CTNNB1 mutations, male gender, specific CTNNB1 mutation site, and lack of TP53 mutations. Differential gene expression analysis stratified by the presence/absence of pseudoglands identified 60 differentially expressed genes (FDR <5%); clustering according to these differentially expressed genes revealed three groups of tumors, one with pseudoglands and a strong association with genes regulated by Wnt signaling; within this group, TP53 mutations were associated with a loss of the typical morphology of CTNNB1-mutated HCCs. When stratified by gender, further differential gene expression showed Wnt-regulated genes were associated with pseudoglands in men but not women. These findings indicate HCC with CTNNB1 mutations are morphologically heterogeneous, with gene penetrance for morphology dependent in part on gender, specific CTNNB1 mutations, and co-occurring TP53 mutations. This heterogeneity has important implications for the classification of HCC.


Assuntos
Biomarcadores Tumorais/genética , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Mutação , beta Catenina/genética , Adulto , Idoso , Feminino , Predisposição Genética para Doença , Humanos , Masculino , Pessoa de Meia-Idade , Gradação de Tumores , Fenótipo , Proteína Supressora de Tumor p53/genética , Proteínas Wnt/genética , Via de Sinalização Wnt/genética
9.
Int J Mol Sci ; 22(21)2021 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-34769077

RESUMO

Iron deficiency chlorosis (IDC) is an abiotic stress that negatively affects soybean (Glycine max [L.] Merr.) production. Much of our knowledge of IDC stress responses is derived from model plant species. Gene expression, quantitative trait loci (QTL) mapping, and genome-wide association studies (GWAS) performed in soybean suggest that stress response differences exist between model and crop species. Our current understanding of the molecular response to IDC in soybeans is largely derived from gene expression studies using near-isogenic lines differing in iron efficiency. To improve iron efficiency in soybeans and other crops, we need to expand gene expression studies to include the diversity present in germplasm collections. Therefore, we collected 216 purified RNA samples (18 genotypes, two tissue types [leaves and roots], two iron treatments [sufficient and deficient], three replicates) and used RNA sequencing to examine the expression differences of 18 diverse soybean genotypes in response to iron deficiency. We found a rapid response to iron deficiency across genotypes, most responding within 60 min of stress. There was little evidence of an overlap of specific differentially expressed genes, and comparisons of gene ontology terms and transcription factor families suggest the utilization of different pathways in the stress response. These initial findings suggest an untapped genetic potential within the soybean germplasm collection that could be used for the continued improvement of iron efficiency in soybean.


Assuntos
Regulação da Expressão Gênica de Plantas , Glycine max/genética , Ferro/metabolismo , Estudo de Associação Genômica Ampla , Locos de Características Quantitativas , Glycine max/metabolismo , Estresse Fisiológico , Transcriptoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA