Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
bioRxiv ; 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38798565

RESUMO

Cancer-associated fibroblast (CAF) subpopulations in pancreatic ductal adenocarcinoma (PDAC) have been identified using single-cell RNA sequencing (scRNAseq) with divergent characteristics, but their clinical relevance remains unclear. We translate scRNAseq-derived CAF cell-subpopulation-specific marker genes to bulk RNAseq data, and develop a single- sample classifier, DeCAF, for the classification of clinically rest raining and perm issive CAF subtypes. We validate DeCAF in 19 independent bulk transcriptomic datasets across four tumor types (PDAC, mesothelioma, bladder and renal cell carcinoma). DeCAF subtypes have distinct histology features, immune landscapes, and are prognostic and predict response to therapy across cancer types. We demonstrate that DeCAF is clinically replicable and robust for the classification of CAF subtypes in patients for multiple tumor types, providing a better framework for the future development and translation of therapies against permissive CAF subtypes and preservation of restraining CAF subtypes. Significance: We introduce a replicable and robust classifier, DeCAF, that delineates the significance of the role of permissive and restraining CAF subtypes in cancer patients. DeCAF is clinically tractable, prognostic and predictive of treatment response in multiple cancer types and lays the translational groundwork for the preclinical and clinical development of CAF subtype specific therapies.

2.
J Surg Oncol ; 129(5): 860-868, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38233984

RESUMO

BACKGROUND: Pancreatic ductal adenocarcinoma (PDAC) has a fibrotic stroma that has both tumor-promoting and tumor-restraining properties. Different types of cancer-associated fibroblasts (CAFs) have been described. Here, we investigated whether CAFs within the same subtype exhibit heterogeneous functions. METHODS: We evaluated the gene and protein expression differences in two myofibroblastic CAF (myCAF) lines using single-cell and bulk RNA-sequencing. We utilized proliferation and migration assays to determine the effect of different CAF lines on a tumor cell line. RESULTS: We found that myCAF lines express an activated stroma subtype gene signature, which is associated with a shorter survival in patients. Although both myCAF lines expressed α-smooth muscle actin (α-SMA), platelet-derived growth factor-α (PDGFR-α), fibroblast-activated protein (FAP), and vimentin, we observed heterogeneity between the two lines. Similarly, despite being consistent with myCAF gene expression overall, heterogeneity within specific genes was observed. We found that these differences extended to the functional level where the two myCAF lines had different effects on the same tumor cell line. The myCAF216 line, which had slightly increased inflammatory CAF-like gene expression and higher protein expression of α-SMA, PDGFR-α, and FAP was found to restrain migration of tumor cells. CONCLUSIONS: We found that two myCAF lines with globally similar expression characteristics had different effects on the same tumor cell line, one promoting and the other restraining migration. Our study highlights that there may be unappreciated heterogeneity within CAF subtypes. Further investigation and attention to specific genes or proteins that may drive this heterogeneity will be important.


Assuntos
Fibroblastos Associados a Câncer , Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Fibroblastos Associados a Câncer/metabolismo , Fibroblastos Associados a Câncer/patologia , Neoplasias Pancreáticas/patologia , Carcinoma Ductal Pancreático/patologia , Fibroblastos/metabolismo , Linhagem Celular Tumoral , Microambiente Tumoral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA