Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cell Biosci ; 14(1): 19, 2024 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-38311785

RESUMO

BACKGROUND: The tumour microenvironment (TME) consists of tumour-supportive immune cells, endothelial cells, and fibroblasts. PhenoCycler, a high-plex single cell spatial biology imaging platform, is used to characterize the complexity of the TME. Researchers worldwide harvest and bank tissues from mouse models which are employed to model a plethora of human disease. With the explosion of interest in spatial biology, these panoplies of archival tissues provide a valuable resource to answer new questions. Here, we describe our protocols for developing tunable PhenoCycler multiplexed imaging panels and describe our open-source data analysis pipeline. Using these protocols, we used PhenoCycler to spatially resolve the TME of 8 routinely employed pre-clinical models of lymphoma, breast cancer, and melanoma preserved as FFPE. RESULTS: Our data reveal distinct TMEs in the different cancer models that were imaged and show that cell-cell contacts differ depending on the tumour type examined. For instance, we found that the immune infiltration in a murine model of melanoma is altered in cellular organization in melanomas that become resistant to αPD-1 therapy, with depletions in a number of cell-cell interactions. CONCLUSIONS: This work presents a valuable resource study seamlessly adaptable to any field of research involving murine models. The methodology described allows researchers to address newly formed hypotheses using archival materials, bypassing the new to perform new mouse studies.

2.
Environ Monit Assess ; 195(3): 416, 2023 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-36807828

RESUMO

Current oil spill forensic identification of source oils relies upon hydrocarbon biomarkers resistant to weathering. This international technique was developed by the European Committee for Standardization (CEN), under EN 15522-2 Oil Spill Identification guidelines. The number of biomarkers have expanded at pace with technological advances, while distinguishing new biomarkers becomes more challenging due to interference of isobaric compounds, matrix effects, and high cost of weathering experiments. Application of high-resolution mass spectrometry enabled exploration of potential polycyclic aromatic nitrogen heterocycle (PANH) oil biomarkers. The instrumentation showed reduction in isobaric and matrix interferences, allowing for identification of low-level PANH and alkylated PANHs (APANHs). Weathered oil samples, obtained from a marine microcosm weathering experiment, enabled comparison with source oils to identify new, stable forensic biomarkers. This study highlighted eight new APANH diagnostic ratios that expanded the biomarker suite, increasing the confidence for identifying highly weathered oils back to their source oil.


Assuntos
Poluição por Petróleo , Petróleo , Hidrocarbonetos Policíclicos Aromáticos , Poluentes Químicos da Água , Nitrogênio/análise , Monitoramento Ambiental/métodos , Óleos , Hidrocarbonetos/análise , Poluição por Petróleo/análise , Biomarcadores , Petróleo/análise , Hidrocarbonetos Policíclicos Aromáticos/análise , Poluentes Químicos da Água/análise
3.
Mol Divers ; 27(1): 389-423, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35505173

RESUMO

Recent studies have revealed that MERTK and BRAF V600E receptors have been found to be over-expressed in several types of cancers including melanoma, making these receptors targets for drug design. In this study, we have designed novel peptide conjugates with the natural products vanillic acid, thiazole-2-carboxylic acid, cinnamic acid, theanine, and protocatechuic acid. Each of these compounds was conjugated with the tumor targeting peptide sequence TAASGVRSMH, known to bind to NG2 and target tumor neovasculature. We examined their binding affinities and stability with MERTK and BRAF V600E receptors using molecular docking and molecular dynamics studies. Compared to the neat compounds, the peptide conjugates displayed higher binding affinity toward both receptors. In the case of MERTK, the most stable complexes were formed with di-theaninate-peptide, vanillate-peptide, and thiazole-2-amido peptide conjugates and binding occurred in the hinge region. Additionally, it was discovered that the peptide alone also had high binding ability and stability with the MERTK receptor. In the case of BRAF V600E, the peptide conjugates of protocatechuate, vanillate and thiazole-2-amido peptide conjugates showed the formation of the most stable complexes and binding occurred in the ATP binding cleft. Further analysis revealed that the number of hydrogen bonds and hydrophobic interactions played a critical role in enhanced stability of the complexes. Docking studies also revealed that binding affinities for NG2 were similar to MERTK and higher for BRAF V600E. MMGBSA studies of the trajectories revealed that the protocatechuate-peptide conjugate showed the highest binding energy with BRAF V600E while the peptide-TAASGVRSMH showed the highest binding energy with MERTK. ADME studies revealed that each of the compounds showed medium to high permeability toward MDCK cells and were not hERG blockers. Furthermore, the conjugates were not CYP inhibitors or substrates, but they were found to be Pgp substrates. Our results indicated that the protocatechuate-TAASGVRSMH, thiazole-2-amido-TAASGVRSMH, and vanillate-TAASGVRSMH conjugates may be furthered developed for in vitro and in vivo studies as novel tumor targeting compounds for tumor cells over-expressing BRAF V600E, while di-theaninate-amido-TAASGVRSMH and thiazole-2-amido-TAASGVRSMH conjugates may be developed for targeting MERTK receptors. These studies provide insight into the molecular interactions of natural product-peptide conjugates and their potential for binding to and targeting MERTK and BRAF V600E receptors in developing new therapeutics for targeting cancer.


Assuntos
Simulação de Dinâmica Molecular , Proteínas Proto-Oncogênicas B-raf , Proteínas Proto-Oncogênicas B-raf/genética , Proteínas Proto-Oncogênicas B-raf/metabolismo , c-Mer Tirosina Quinase/metabolismo , Simulação de Acoplamento Molecular , Linhagem Celular Tumoral , Peptídeos , Tiazóis , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/química , Mutação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA