Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Reproduction ; 161(6): 645-655, 2021 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-33835049

RESUMO

Initiation of spermatogonial differentiation in the mouse testis begins with the response to retinoic acid (RA) characterized by activation of KIT and STRA8 expression. In the adult, spermatogonial differentiation is spatiotemporally coordinated by a pulse of RA every 8.6 days that is localized to stages VII-VIII of the seminiferous epithelial cycle. Dogmatically, progenitor spermatogonia that express retinoic acid receptor gamma (RARG) at these stages will differentiate in response to RA, but this has yet to be tested functionally. Previous single-cell RNA-seq data identified phenotypically and functionally distinct subsets of spermatogonial stem cells (SSCs) and progenitor spermatogonia, where late progenitor spermatogonia were defined by expression of RARG and Dppa3. Here, we found late progenitor spermatogonia (RARGhigh KIT-) were further divisible into two subpopulations based on Dppa3 reporter expression (Dppa3-ECFP or Dppa3-EGFP) and were observed across all stages of the seminiferous epithelial cycle. However, nearly all Dppa3+ spermatogonia were differentiating (KIT+) late in the seminiferous epithelial cycle (stages X-XII), while Dppa3- late progenitors remained abundant, suggesting that Dppa3+ and Dppa3- late progenitors differentially responded to RA. Following acute RA treatment (2-4 h), significantly more Dppa3+ late progenitors induced KIT, including at the midpoint of the cycle (stages VI-IX), than Dppa3- late progenitors. Subsequently, single-cell analyses indicated a subset of Dppa3+ late progenitors expressed higher levels of Rxra, which we confirmed by RXRA whole-mount immunostaining. Together, these results indicate RARG alone is insufficient to initiate a spermatogonial response to RA in the adult mouse testis and suggest differential RXRA expression may discriminate responding cells.


Assuntos
Células-Tronco Germinativas Adultas/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Receptores do Ácido Retinoico/metabolismo , Receptor X Retinoide alfa/metabolismo , Espermatogênese , Espermatogônias/metabolismo , Tretinoína/farmacologia , Células-Tronco Germinativas Adultas/citologia , Células-Tronco Germinativas Adultas/efeitos dos fármacos , Animais , Antineoplásicos/farmacologia , Proteínas Cromossômicas não Histona/genética , Masculino , Camundongos , Receptores do Ácido Retinoico/genética , Receptor X Retinoide alfa/genética , Espermatogônias/citologia , Espermatogônias/efeitos dos fármacos , Receptor gama de Ácido Retinoico
2.
Cell Rep ; 25(6): 1650-1667.e8, 2018 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-30404016

RESUMO

Spermatogenesis is a complex and dynamic cellular differentiation process critical to male reproduction and sustained by spermatogonial stem cells (SSCs). Although patterns of gene expression have been described for aggregates of certain spermatogenic cell types, the full continuum of gene expression patterns underlying ongoing spermatogenesis in steady state was previously unclear. Here, we catalog single-cell transcriptomes for >62,000 individual spermatogenic cells from immature (postnatal day 6) and adult male mice and adult men. This allowed us to resolve SSC and progenitor spermatogonia, elucidate the full range of gene expression changes during male meiosis and spermiogenesis, and derive unique gene expression signatures for multiple mouse and human spermatogenic cell types and/or subtypes. These transcriptome datasets provide an information-rich resource for studies of SSCs, male meiosis, testicular cancer, male infertility, or contraceptive development, as well as a gene expression roadmap to be emulated in efforts to achieve spermatogenesis in vitro.


Assuntos
Mamíferos/genética , Análise de Célula Única , Espermátides/citologia , Espermatogênese/genética , Espermatogônias/citologia , Transcriptoma/genética , Adulto , Envelhecimento/genética , Animais , Diferenciação Celular , Regulação da Expressão Gênica no Desenvolvimento , Haploidia , Humanos , Masculino , Meiose , Camundongos Endogâmicos C57BL , Transdução de Sinais , Espermátides/metabolismo , Espermatogônias/metabolismo , Células-Tronco/citologia , Células-Tronco/metabolismo , Testículo/citologia
3.
PLoS One ; 13(3): e0193195, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29494646

RESUMO

Induced pluripotent stem cells (iPSCs) offer the possibility of cell replacement therapies using patient-matched cells to treat otherwise intractable diseases and debilitations. To successfully realize this potential, several factors must be optimized including i) selection of the appropriate cell type and numbers to transplant, ii) determination of the means of transplantation and the location into which the transplanted cells should be delivered, and iii) demonstration of the safety and efficacy of the cell replacement protocol to mitigate each targeted disease state. A majority of diseases or debilitations likely to be targeted by cell-based therapeutic approaches represent complex conditions or physiologies manifest predominantly in primates including humans. Nonhuman primates afford the most clinically relevant model system for biomedical studies and testing of cell-based therapies. Baboons have 92% genomic similarity with humans overall and especially significant similarities in their immunogenetic system, rendering this species a particularly valuable model for testing procedures involving cell transplants into living individuals. To maximize the utility of the baboon model, standardized protocols must be developed for the derivation of induced pluripotent stem cells from living adults and the long-term maintenance of these cells in culture. Here we tested four commercially available culture systems (ReproFF, mTeSR1, E8 and Pluristem) for competence to maintain baboon iPSCs in a pluripotent state over multiple passages, and to support the derivation of new lines of baboon iPSCs. Of these four media only Pluristem was able to maintain baboon pluripotency as assessed by morphological characteristics, immunocytochemistry and RT-qPCR. Pluristem also facilitated the derivation of new lines of iPSCs from adult baboon somatic cells, which had previously not been accomplished. We derived multiple iPS cell lines from adult baboon peripheral blood mononuclear cells cultured in Pluristem. These were validated by expression of the pluripotency markers OCT4, NANOG, SOX2, SSEA4 and TRA181, as well as the ability to differentiate into tissues from all three germ layers when injected into immunocompromised mice. These findings further advance the utility of the baboon as an ideal preclinical model system for optimizing iPS cell-based, patient-specific replacement therapies in humans.


Assuntos
Técnicas de Cultura de Células/métodos , Células-Tronco Pluripotentes Induzidas/citologia , Papio anubis , Animais , Diferenciação Celular , Proliferação de Células , Células Cultivadas , Regulação da Expressão Gênica no Desenvolvimento , Células-Tronco Pluripotentes Induzidas/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos NOD , Papio anubis/metabolismo
4.
Biol Reprod ; 95(6): 117, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27733379

RESUMO

Precise separation of spermatogonial stem cells (SSCs) from progenitor spermatogonia that lack stem cell activity and are committed to differentiation remains a challenge. To distinguish between these spermatogonial subtypes, we identified genes that exhibited bimodal mRNA levels at the single-cell level among undifferentiated spermatogonia from Postnatal Day 6 mouse testes, including Tspan8, Epha2, and Pvr, each of which encode cell surface proteins useful for cell selection. Transplantation studies provided definitive evidence that a TSPAN8-high subpopulation is enriched for SSCs. RNA-seq analyses identified genes differentially expressed between TSPAN8-high and -low subpopulations that clustered into multiple biological pathways potentially involved in SSC renewal or differentiation, respectively. Methyl-seq analysis identified hypomethylated domains in the promoters of these genes in both subpopulations that colocalized with peaks of histone modifications defined by ChIP-seq analysis. Taken together, these results demonstrate functional heterogeneity among mouse undifferentiated spermatogonia and point to key biological characteristics that distinguish SSCs from progenitor spermatogonia.


Assuntos
Células-Tronco Germinativas Adultas/citologia , Testículo/citologia , Tetraspaninas/metabolismo , Células-Tronco Germinativas Adultas/metabolismo , Animais , Biomarcadores/metabolismo , Ciclo Celular/fisiologia , Perfilação da Expressão Gênica , Masculino , Camundongos , Receptor EphA2/genética , Receptor EphA2/metabolismo , Espermatogênese , Testículo/metabolismo , Tetraspaninas/genética
5.
Stem Cell Res ; 17(2): 352-366, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27622596

RESUMO

The derivation of dopaminergic neurons from induced pluripotent stem cells brings new hope for a patient-specific, stem cell-based replacement therapy to treat Parkinson's disease (PD) and related neurodegenerative diseases; and this novel cell-based approach has already proven effective in animal models. However, there are several aspects of this procedure that have yet to be optimized to the extent required for translation to an optimal cell-based transplantation protocol in humans. These challenges include pinpointing the optimal graft location, appropriately scaling up the graft volume, and minimizing the risk of chronic immune rejection, among others. To advance this procedure to the clinic, it is imperative that a model that accurately and fully recapitulates characteristics most pertinent to a cell-based transplantation to the human brain is used to optimize key technical aspects of the procedure. Nonhuman primates mimic humans in multiple ways including similarities in genomics, neuroanatomy, neurophysiology, immunogenetics, and age-related changes in immune function. These characteristics are critical to the establishment of a relevant model in which to conduct preclinical studies to optimize the efficacy and safety of cell-based therapeutic approaches to the treatment of PD. Here we review previous studies in rodent models, and emphasize additional advantages afforded by nonhuman primate models in general, and the baboon model in particular, for preclinical optimization of cell-based therapeutic approaches to the treatment of PD and other neurodegenerative diseases. We outline current unresolved challenges to the successful application of stem cell therapies in humans and propose that the baboon model in particular affords a number of traits that render it most useful for preclinical studies designed to overcome these challenges.


Assuntos
Doença de Parkinson/terapia , Transplante de Células-Tronco , Células-Tronco/citologia , Potenciais de Ação , Animais , Terapia Baseada em Transplante de Células e Tecidos , Dopamina/metabolismo , Neurônios Dopaminérgicos/citologia , Neurônios Dopaminérgicos/metabolismo , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/transplante , Modelos Animais
6.
Stem Cells Transl Med ; 5(9): 1133-44, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27343168

RESUMO

UNLABELLED: : The progressive death of dopamine producing neurons in the substantia nigra pars compacta is the principal cause of symptoms of Parkinson's disease (PD). Stem cells have potential therapeutic use in replacing these cells and restoring function. To facilitate development of this approach, we sought to establish a preclinical model based on a large nonhuman primate for testing the efficacy and safety of stem cell-based transplantation. To this end, we differentiated baboon fibroblast-derived induced pluripotent stem cells (biPSCs) into dopaminergic neurons with the application of specific morphogens and growth factors. We confirmed that biPSC-derived dopaminergic neurons resemble those found in the human midbrain based on cell type-specific expression of dopamine markers TH and GIRK2. Using the reverse transcriptase quantitative polymerase chain reaction, we also showed that biPSC-derived dopaminergic neurons express PAX6, FOXA2, LMX1A, NURR1, and TH genes characteristic of this cell type in vivo. We used perforated patch-clamp electrophysiology to demonstrate that biPSC-derived dopaminergic neurons fired spontaneous rhythmic action potentials and high-frequency action potentials with spike frequency adaption upon injection of depolarizing current. Finally, we showed that biPSC-derived neurons released catecholamines in response to electrical stimulation. These results demonstrate the utility of the baboon model for testing and optimizing the efficacy and safety of stem cell-based therapeutic approaches for the treatment of PD. SIGNIFICANCE: Functional dopamine neurons were produced from baboon induced pluripotent stem cells, and their properties were compared to baboon midbrain cells in vivo. The baboon has advantages as a clinically relevant model in which to optimize the efficacy and safety of stem cell-based therapies for neurodegenerative diseases, such as Parkinson's disease. Baboons possess crucial neuroanatomical and immunological similarities to humans, and baboon pluripotent stem cells can be differentiated into functional neurons that mimic those in the human brain, thus laying the foundation for the utility of the baboon model for evaluating stem cell therapies.


Assuntos
Neurônios Dopaminérgicos/citologia , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Neurais/citologia , Animais , Técnicas de Cultura de Células/métodos , Diferenciação Celular/fisiologia , Neurônios Dopaminérgicos/fisiologia , Imuno-Histoquímica , Células-Tronco Pluripotentes Induzidas/fisiologia , Modelos Animais , Células-Tronco Neurais/fisiologia , Papio , Técnicas de Patch-Clamp , Reação em Cadeia da Polimerase
7.
Cell ; 165(2): 382-95, 2016 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-27040500

RESUMO

Gene duplication is a major evolutionary force driving adaptation and speciation, as it allows for the acquisition of new functions and can augment or diversify existing functions. Here, we report a gene duplication event that yielded another outcome--the generation of antagonistic functions. One product of this duplication event--UPF3B--is critical for the nonsense-mediated RNA decay (NMD) pathway, while its autosomal counterpart--UPF3A--encodes an enigmatic protein previously shown to have trace NMD activity. Using loss-of-function approaches in vitro and in vivo, we discovered that UPF3A acts primarily as a potent NMD inhibitor that stabilizes hundreds of transcripts. Evidence suggests that UPF3A acquired repressor activity through simple impairment of a critical domain, a rapid mechanism that may have been widely used in evolution. Mice conditionally lacking UPF3A exhibit "hyper" NMD and display defects in embryogenesis and gametogenesis. Our results support a model in which UPF3A serves as a molecular rheostat that directs developmental events.


Assuntos
Desenvolvimento Embrionário , Genes Duplicados , Degradação do RNAm Mediada por Códon sem Sentido , Proteínas de Ligação a RNA/metabolismo , Animais , Linhagem Celular Tumoral , Evolução Molecular , Gametogênese , Células HeLa , Humanos , Camundongos
8.
Cell Reprogram ; 15(6): 495-502, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24182315

RESUMO

Development of effective pluripotent stem cell-based therapies will require safety and efficacy testing in a clinically relevant preclinical model such as nonhuman primates (NHPs). Baboons and macaques are equally similar to humans genetically and both have been extensively used for biomedical research. Macaques are preferred for human immunodeficiency virus/acquired immunodeficiency syndrome (HIV/AIDS) research whereas baboons are preferred for transplantation studies because of the greater similarity of their anatomy and immunogenetic system to those of humans. We generated four induced pluripotent stem cell (iPSC) lines from skin cells of the olive baboon (Papio anubis). Each line shows the distinct morphology of primate pluripotent stem cells, including flat colonies with well-defined borders and a high nuclear/cytoplasm ratio. Each is positive for the pluripotency markers OCT4, SOX2, NANOG, and SSEA4. Pluripotency was confirmed in two lines by teratoma formation with representative tissues from each germ layer, whereas a third produced cells from all three germ layers following embryoid body differentiation. Three lines have a normal male karyotype and the fourth is missing the short arm of one copy of chromosome 18. This may serve as an in vitro model for the human developmental disorder 18p-, which impacts 1 in 50,000 births/year. These iPSC lines represent the first step toward establishing the baboon as a NHP model for developing stem cell-based therapies.


Assuntos
Modelos Animais , Transplante de Células-Tronco , Animais , Sequência de Bases , Biomarcadores/metabolismo , Primers do DNA , Células-Tronco Pluripotentes Induzidas , Cariotipagem , Papio , Reação em Cadeia da Polimerase
9.
Biol Reprod ; 88(6): 159, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23677977

RESUMO

The mammalian X chromosome contains a large number of multicopy genes that are expressed during spermatogenesis. The roles of these genes during germ cell development and the functional significance of gene multiplication remain mostly unexplored, as the presence of multicopy gene families poses a challenge for genetic studies. Here we report the deletion of a 1.1-Mb segment of the mouse X chromosome that is syntenic with the human Xq22.1 region and contains 20 genes that are expressed predominantly in testis and brain, including three members of the nuclear export factor gene family (Nxf2, Nxf3, and Nxf7) and five copies of preferentially expressed antigen in melanoma-like 3 (Pramel3). We have shown that germline-specific Cre/loxP-mediated deletion of this 1.1-Mb segment is efficient and causes defective chromosomal synapsis, meiotic arrest, and sterility in male mice. Our results demonstrate that this 1.1-Mb region contains one or more novel X-linked factors that are essential for male meiosis.


Assuntos
Fertilidade/genética , Meiose/genética , Espermatogênese/genética , Testículo/metabolismo , Cromossomo X/genética , Animais , Sequência de Bases , Células Germinativas/metabolismo , Infertilidade Masculina/genética , Infertilidade Masculina/metabolismo , Masculino , Camundongos , Deleção de Sequência , Contagem de Espermatozoides , Cromossomo X/metabolismo
10.
Biol Reprod ; 82(1): 136-45, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19759366

RESUMO

Phosphoglycerate kinase 2 (PGK2), an isozyme that catalyzes the first ATP-generating step in the glycolytic pathway, is encoded by an autosomal retrogene that is expressed only during spermatogenesis. It replaces the ubiquitously expressed phosphoglycerate kinase 1 (PGK1) isozyme following repression of Pgk1 transcription by meiotic sex chromosome inactivation during meiotic prophase and by postmeiotic sex chromatin during spermiogenesis. The targeted disruption of Pgk2 by homologous recombination eliminates PGK activity in sperm and severely impairs male fertility, but does not block spermatogenesis. Mating behavior, reproductive organ weights (testis, excurrent ducts, and seminal vesicles), testis histology, sperm counts, and sperm ultrastructure were indistinguishable between Pgk2(-/-) and wild-type mice. However, sperm motility and ATP levels were markedly reduced in males lacking PGK2. These defects in sperm function were slightly less severe than observed in males lacking glyceraldehyde-3-phosphate dehydrogenase, spermatogenic (GAPDHS), the isozyme that catalyzes the step preceding PGK2 in the sperm glycolytic pathway. Unlike Gapdhs(-/-) males, the Pgk2(-/-) males also sired occasional pups. Alternative pathways that bypass the PGK step of glycolysis exist. We determined that one of these bypass enzymes, acylphosphatase, is active in mouse sperm, perhaps contributing to phenotypic differences between mice lacking GAPDHS or PGK2. This study determined that PGK2 is not required for the completion of spermatogenesis, but is essential for sperm motility and male fertility. In addition to confirming the importance of the glycolytic pathway for sperm function, distinctive phenotypic characteristics of Pgk2(-/-) mice may provide further insights into the regulation of sperm metabolism.


Assuntos
Fertilidade , Isoenzimas/metabolismo , Fosfoglicerato Quinase/metabolismo , Espermatogênese , Espermatozoides/enzimologia , Testículo/enzimologia , Hidrolases Anidrido Ácido/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Gliceraldeído-3-Fosfato Desidrogenases/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Contagem de Espermatozoides , Motilidade dos Espermatozoides , Espermatozoides/ultraestrutura , Acilfosfatase
11.
Nucleic Acids Res ; 36(22): 7157-67, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19015122

RESUMO

Phosphoglycerate kinase 2 (PGK2) is a germ cell-specific protein whose mRNA is translationally regulated in the mammalian testis. Using RNA affinity chromatography with the 3'-untranslated region (UTR) of Pgk2 mRNA and adult testis extracts, several associated proteins including a novel isoform of the AU-rich element RNA-binding protein and KH-type splicing regulatory protein (KSRP) were identified. KSRP, a protein of approximately 75 kDa, is widely expressed in somatic and germ cells where it is primarily nuclear. In addition to the approximately 75-kDa KSRP, a approximately 52-kD KSRP, t-KSRP, is present in the cytoplasm of a subpopulation of germ cells. t-KSRP binds directly to a 93-nt sequence (designated the F1 region) of the 3'-UTR of the Pgk2 mRNA and destabilizes Pgk2 mRNA constructs in testis extracts and in transfected cells. We conclude that this testicular variant of the multifunctional nucleic acid-binding protein, KSRP, serves as a decay-promoting factor for Pgk2 mRNA in male germ cells.


Assuntos
Isoenzimas/genética , Fosfoglicerato Quinase/genética , Estabilidade de RNA , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/metabolismo , Testículo/metabolismo , Transativadores/metabolismo , Regiões 3' não Traduzidas/química , Regiões 3' não Traduzidas/metabolismo , Animais , Sítios de Ligação , Citoplasma/metabolismo , Variação Genética , Células HeLa , Humanos , Isoenzimas/metabolismo , Masculino , Meiose , Camundongos , Proteínas do Tecido Nervoso/metabolismo , Fosfoglicerato Quinase/metabolismo , Proteína de Ligação a Regiões Ricas em Polipirimidinas/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Proteínas de Ligação a RNA/isolamento & purificação , Testículo/enzimologia , Transativadores/isolamento & purificação
12.
Mutat Res ; 654(2): 150-7, 2008 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-18582597

RESUMO

Humans are exposed to ionizing radiation (IR) under various circumstances, e.g. cosmic radiation, diagnostic X-rays and radiotherapy for cancer. It has been shown that IR can impair spermatogenesis and can cause mutations in germ cells. However, the mutagenic responses of germ cells exposed to IR at different stages of testicular maturation have not been examined by directly assessing the mutant frequency in defined spermatogenic cell types. This study was performed to address whether preadult exposure to IR can increase mutations in adult germ cells that could in turn have a major impact on adult reproductive function and the health of ensuing offspring. Male Lac I transgenic mice were irradiated with a single dose of 2.5 Gy of gamma-ray at different ages before adulthood, reflecting different stages of testicular maturation, and then mutant frequency (MF) was determined directly in spermatogenic cell types emanating from the irradiated precursor cells. The results showed that (1) preadult exposure to IR did not significantly increase MF in adult epididymal spermatozoa; (2) spermatogenic stages immediately following the irradiated stage(s) displayed an elevated mutant frequency; but (3) the mutant frequency was restored to unirradiated levels in later stages of spermatogenesis. These findings provide evidence that there is a mechanism(s) to prevent spermatogenic cells with elevated mutant frequencies from progressing through spermatogenesis.


Assuntos
Mutagênese , Radiação Ionizante , Espermatogênese/efeitos da radiação , Animais , Frequência do Gene , Óperon Lac , Masculino , Camundongos , Camundongos Transgênicos , Testículo/efeitos da radiação
13.
Biol Reprod ; 78(3): 537-45, 2008 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-18032419

RESUMO

Vitamin A deficiency in the mouse results in an arrest in the progression of undifferentiated spermatogonia to differentiating spermatogonia. The supplement of retinol to vitamin-A-deficient mice reinitiates spermatogenesis in a synchronous manner throughout the testes. It is unclear whether the effects of retinoids are the result of a direct action on germ cells or are indirectly mediated through Sertoli cells. The expression of Stimulated by retinoic acid gene 8 (Stra8), which is required for spermatogenesis, is directly related to the availability of retinoic acid (RA). Analysis of gene expression by microarrays revealed moderate levels of Stra8 transcript in gonocytes and high levels in A and B spermatogonia. Stra8 mRNA levels were greatly reduced or absent in germ cells once they entered meiosis. This study examined the effect of retinoic acid on cultured neonatal testes and isolated gonocytes/spermatogonia in vitro. THY1(+) and KIT(+) germ cells were isolated by magnetic-activated cell sorting from the testes of mice of different ages. Isolated germ cells were cultured and treated with either vehicle (ethanol) or RA without feeder cells. We found that 1) Stra8 is predominantly expressed in premeiotic germ cells, 2) RA stimulates gonocyte DNA replication and differentiation in cultured neonatal testes, 3) in the absence of feeder cells, RA directly induces the transition of undifferentiated spermatogonia to differentiating spermatogonia by stimulating Stra8 and Kit gene expression, 4) RA dramatically stimulates Stra8 expression in undifferentiated spermatogonia but has a lesser impact in differentiating spermatogonia, 5) endogenous Stra8 gene expression is higher in differentiating spermatogonia than in undifferentiated spermatogonia and could mediate the RA effects on spermatogonial maturation, and 6) RA stimulates a group of genes involved in the metabolism, storage, transport, and signaling of retinoids.


Assuntos
Proteínas/genética , Células de Sertoli/efeitos dos fármacos , Espermatogênese/genética , Espermatogônias/efeitos dos fármacos , Tretinoína/farmacologia , Proteínas Adaptadoras de Transdução de Sinal , Animais , Animais Recém-Nascidos , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/genética , Células Cultivadas , Replicação do DNA/efeitos dos fármacos , Replicação do DNA/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica/efeitos dos fármacos , Masculino , Meiose/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Análise de Sequência com Séries de Oligonucleotídeos , Proteínas/metabolismo , Proteínas Proto-Oncogênicas c-kit/genética , Proteínas Proto-Oncogênicas c-kit/metabolismo , Células de Sertoli/metabolismo , Células de Sertoli/fisiologia , Espermatogênese/efeitos dos fármacos , Espermatogônias/metabolismo , Espermatogônias/fisiologia , Vitamina A/metabolismo , Vitamina A/farmacologia
14.
J Biol Chem ; 282(40): 29658-66, 2007 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-17681941

RESUMO

The adenine nucleotide translocases (Ant) facilitate the transport of ADP and ATP by an antiport mechanism across the inner mitochondrial membrane, thus playing an essential role in cellular energy metabolism. We recently identified a novel member of the Ant family in mouse, Ant4, of which gene configuration as well as amino acid homology is well conserved among mammals. The conservation of Ant4 in mammals, along with the absence of Ant4 in nonmammalian species, suggests a unique and indispensable role for this ADP/ATP carrier in mammalian development. Of interest, in contrast to its paralog Ant2, which is encoded by the X chromosome and ubiquitously expressed in somatic cells, Ant4 is encoded by an autosome and selectively expressed in testicular germ cells. Immunohistochemical examination as well as RNA expression analysis using separated spermatogenic cell types revealed that Ant4 expression was particularly high in spermatocytes. When we generated Ant4-deficient mice by targeted disruption, a significant reduction in testicular size was observed without any other distinguishable abnormalities in the mice. Histological examination as well as stage-specific gene expression analysis in adult and neonatal testes revealed a severe reduction of spermatocytes accompanied by increased apoptosis. Subsequently, the Ant4-deficient male mice were infertile. Taken together, these data elucidated the indispensable role of Ant4 in murine spermatogenesis. Considering the unique conservation and chromosomal location of the Ant family genes in mammals, the Ant4 gene may have arisen in mammalian ancestors and been conserved in mammals to serve as the sole and essential mitochondrial ADP/ATP carrier during spermatogenesis where the sex chromosome-linked Ant2 gene is inactivated.


Assuntos
Proteínas de Membrana Transportadoras/fisiologia , Translocases Mitocondriais de ADP e ATP/fisiologia , Espermatogênese , Difosfato de Adenosina/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Evolução Molecular , Regulação da Expressão Gênica , Vetores Genéticos , Humanos , Masculino , Proteínas de Membrana Transportadoras/genética , Camundongos , Camundongos Transgênicos , Translocases Mitocondriais de ADP e ATP/metabolismo , Modelos Biológicos , Filogenia , Cromossomo X/metabolismo
15.
Biol Reprod ; 77(4): 697-706, 2007 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-17615405

RESUMO

In mice, unique events regulating epigenetic programming (e.g., genomic imprinting) and replication state (mitosis versus meiosis) occur during fetal germ cell development. To determine whether these processes are autonomously programmed in fetal germ cells or are dependent upon ongoing instructive interactions with surrounding gonadal somatic cells, we isolated male and female germ cells at 13.5 days postcoitum (dpc) and maintained them in culture for 6 days, either alone or in the presence of feeder cells or gonadal somatic cells. We examined allele-specific DNA methylation in the imprinted H19 and Snrpn genes, and we also determined whether these cells remained mitotic or entered meiosis. Our results show that isolated male germ cells are able to establish a characteristic "paternal" methylation pattern at imprinted genes in the absence of any support from somatic cells. On the other hand, cultured female germ cells maintain a hypomethylated status at these loci, characteristic of the normal "maternal" methylation pattern in endogenous female germ cells before birth. Further, the surviving female germ cells entered first meiotic prophase and reached the pachytene stage, whereas male germ cells entered mitotic arrest. These results indicate that mechanisms controlling both epigenetic programming and replication state are autonomously regulated in fetal germ cells that have been exposed to the genital ridge prior to 13.5 dpc.


Assuntos
Feto/citologia , Regulação da Expressão Gênica no Desenvolvimento , Impressão Genômica , Células Germinativas/crescimento & desenvolvimento , Diferenciação Sexual/genética , Desenvolvimento Sexual/genética , Alelos , Animais , Autoantígenos/genética , Células Cultivadas , DNA (Citosina-5-)-Metiltransferases/metabolismo , Metilação de DNA , Feminino , Feto/metabolismo , Células Germinativas/citologia , Células Germinativas/metabolismo , Gônadas/citologia , Gônadas/embriologia , Masculino , Camundongos , Camundongos Transgênicos , RNA Longo não Codificante , RNA não Traduzido/genética , Ribonucleoproteínas Nucleares Pequenas/genética , Proteínas Centrais de snRNP
16.
Proc Natl Acad Sci U S A ; 102(32): 11361-6, 2005 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-16055553

RESUMO

We previously reported that the genomes of gonadal germ cells at 11.5-19.5 days postcoitum (dpc) are incompetent to support full-term development of cloned mouse embryos. In this study, we performed nuclear transfer using primordial germ cells (PGCs) from earlier stages at 8.5-10.5 dpc. When PGC nuclei at 8.5, 9.5, and 10.5 dpc were transferred into enucleated oocytes, seven cloned embryos developed into full-term offspring. Of these, five, all derived from 8.5- or 9.5-dpc PGCs, developed into healthy adults with normal fertility. Of the remaining two offspring derived from 10.5-dpc PGCs, one died shortly after birth, and the other showed slight growth retardation but subsequently developed into a fertile adult. We examined allele-specific methylation at the imprinted H19 and Snrpn loci in 9.5- to 11.5-dpc PGCs. Although the beginning of methylation erasure was evident on the H19 paternal allele at 9.5 dpc, most PGCs did not demonstrate significant erasure of paternal allele-specific methylation until 10.5 dpc. Maternal allele-specific methylation was largely erased from Snrpn by 10.5 dpc. By 11.5 dpc, the majority of PGCs showed nearly complete or complete erasure of allele-specific methylation in both H19 and Snrpn. These results demonstrate that at least some genomic imprints remain largely intact in 8.5- to 9.5-dpc PGCs and then undergo erasure at approximately 10.5 dpc as the PGCs enter the genital ridges. Thus, migrating PGCs at 8.5-9.5 dpc can be successfully used as donors for nuclear transfer, whereas gonadal PGCs at 11.5 dpc and later are incompetent to support full-term development.


Assuntos
Clonagem de Organismos/métodos , Metilação de DNA , Impressão Genômica/fisiologia , Células Germinativas/citologia , Técnicas de Transferência Nuclear , Fatores Etários , Fosfatase Alcalina , Animais , Autoantígenos , Primers do DNA , Transferência Embrionária , Células Germinativas/fisiologia , Camundongos , Camundongos Transgênicos , RNA Longo não Codificante , RNA não Traduzido/metabolismo , Ribonucleoproteínas Nucleares Pequenas/metabolismo , Análise de Sequência de DNA , Sulfitos , Proteínas Centrais de snRNP
17.
Cancer Lett ; 184(1): 73-80, 2002 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-12104050

RESUMO

The South American opossum, Monodelphis domestica, has been used as a model system to study ultraviolet (UV)-induced genetic alterations that lead to the development of melanoma. Suckling young of Monodelphis exposed to multiple doses of UVB radiation can develop benign or malignant melanomas later as adults. Point mutations predominantly at codon 61 of the N-ras gene have been found in melanomas from sun-exposed body sites in humans. To determine if similar mutations are associated with UV-induced melanoma in Monodelphis, the nucleotide sequence of a Monodelphis N-ras cDNA was determined, and the occurrence of ras mutations in melanomas from UV-irradiated opossums was investigated. Single-strand conformation polymorphism analysis revealed no mutations in either the Monodelphis N-ras or H-ras genes in any of 24 primary malignant melanoma samples analyzed in this study. The disparate association of ras mutations with melanoma in humans and Monodelphis may be explained by differences in nucleotide sequence at codon 61 of the N-ras gene as well as differences in skin architecture between the two species. These results support the contention that a mutationally activated N-ras gene contributes to the vertical growth phase, which is specific to the progression of malignant melanoma in humans.


Assuntos
Genes ras/genética , Melanoma/genética , Mutação , Neoplasias Induzidas por Radiação/genética , Mutação Puntual , Neoplasias Cutâneas/genética , Sequência de Aminoácidos , Animais , Sequência de Bases , Primers do DNA , DNA de Neoplasias/análise , Melanócitos/fisiologia , Dados de Sequência Molecular , Gambás , Reação em Cadeia da Polimerase , Polimorfismo Conformacional de Fita Simples , Pele/efeitos da radiação , Raios Ultravioleta/efeitos adversos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA