Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
bioRxiv ; 2023 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-37904944

RESUMO

Chimerism happens rarely among most mammals but is common in marmosets and tamarins, a result of fraternal twin or triplet birth patterns in which in utero connected circulatory systems (through which stem cells transit) lead to persistent blood chimerism (12-80%) throughout life. The presence of Y-chromosome DNA sequences in other organs of female marmosets has long suggested that chimerism might also affect these organs. However, a longstanding question is whether this chimerism is driven by blood-derived cells or involves contributions from other cell types. To address this question, we analyzed single-cell RNA-seq data from blood, liver, kidney and multiple brain regions across a number of marmosets, using transcribed single nucleotide polymorphisms (SNPs) to identify cells with the sibling's genome in various cell types within these tissues. Sibling-derived chimerism in all tissues arose entirely from cells of hematopoietic origin (i.e., myeloid and lymphoid lineages). In brain tissue this was reflected as sibling-derived chimerism among microglia (20-52%) and macrophages (18-64%) but not among other resident cell types (i.e., neurons, glia or ependymal cells). The percentage of microglia that were sibling-derived showed significant variation across brain regions, even within individual animals, likely reflecting distinct responses by siblings' microglia to local recruitment or proliferation cues or, potentially, distinct clonal expansion histories in different brain areas. In the animals and tissues we analyzed, microglial gene expression profiles bore a much stronger relationship to local/host context than to sibling genetic differences. Naturally occurring marmoset chimerism will provide new ways to understand the effects of genes, mutations and brain contexts on microglial biology and to distinguish between effects of microglia and other cell types on brain phenotypes.

2.
Cell ; 186(17): 3659-3673.e23, 2023 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-37527660

RESUMO

Many regions in the human genome vary in length among individuals due to variable numbers of tandem repeats (VNTRs). To assess the phenotypic impact of VNTRs genome-wide, we applied a statistical imputation approach to estimate the lengths of 9,561 autosomal VNTR loci in 418,136 unrelated UK Biobank participants and 838 GTEx participants. Association and statistical fine-mapping analyses identified 58 VNTRs that appeared to influence a complex trait in UK Biobank, 18 of which also appeared to modulate expression or splicing of a nearby gene. Non-coding VNTRs at TMCO1 and EIF3H appeared to generate the largest known contributions of common human genetic variation to risk of glaucoma and colorectal cancer, respectively. Each of these two VNTRs associated with a >2-fold range of risk across individuals. These results reveal a substantial and previously unappreciated role of non-coding VNTRs in human health and gene regulation.


Assuntos
Canais de Cálcio , Neoplasias Colorretais , Fator de Iniciação 3 em Eucariotos , Glaucoma , Repetições Minissatélites , Humanos , Canais de Cálcio/genética , Neoplasias Colorretais/genética , Genoma Humano , Glaucoma/genética , Polimorfismo Genético , Fator de Iniciação 3 em Eucariotos/genética
3.
medRxiv ; 2023 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-36778285

RESUMO

Mosaic loss of the X chromosome (mLOX) is the most commonly occurring clonal somatic alteration detected in the leukocytes of women, yet little is known about its genetic determinants or phenotypic consequences. To address this, we estimated mLOX in >900,000 women across eight biobanks, identifying 10% of women with detectable X loss in approximately 2% of their leukocytes. Out of 1,253 diseases examined, women with mLOX had an elevated risk of myeloid and lymphoid leukemias and pneumonia. Genetic analyses identified 49 common variants influencing mLOX, implicating genes with established roles in chromosomal missegregation, cancer predisposition, and autoimmune diseases. Complementary exome-sequence analyses identified rare missense variants in FBXO10 which confer a two-fold increased risk of mLOX. A small fraction of these associations were shared with mosaic Y chromosome loss in men, suggesting different biological processes drive the formation and clonal expansion of sex chromosome missegregation events. Allelic shift analyses identified alleles on the X chromosome which are preferentially retained, demonstrating that variation at many loci across the X chromosome is under cellular selection. A novel polygenic score including 44 independent X chromosome allelic shift loci correctly inferred the retained X chromosomes in 80.7% of mLOX cases in the top decile. Collectively our results support a model where germline variants predispose women to acquiring mLOX, with the allelic content of the X chromosome possibly shaping the magnitude of subsequent clonal expansion.

4.
Sci Rep ; 12(1): 12025, 2022 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-35835769

RESUMO

Non-invasive prenatal testing (NIPT) to detect fetal aneuploidy by sequencing the cell-free DNA (cfDNA) in maternal plasma is being broadly adopted. To detect fetal aneuploidies from maternal plasma, where fetal DNA is mixed with far-larger amounts of maternal DNA, NIPT requires a minimum fraction of the circulating cfDNA to be of placental origin, a level which is usually attained beginning at 10 weeks gestational age. We present an approach that leverages the arrangement of alleles along homologous chromosomes-also known as chromosomal phase-to make NIPT analyses more conclusive. We validate our approach with in silico simulations, then re-analyze data from a pregnant mother who, due to a fetal DNA fraction of 3.4%, received an inconclusive aneuploidy determination through NIPT. We find that the presence of a trisomy 18 fetus can be conclusively inferred from the patient's same molecular data when chromosomal phase is incorporated into the analysis. Key to the effectiveness of our approach is the ability of homologous chromosomes to act as natural controls for each other and the ability of chromosomal phase to integrate subtle quantitative signals across very many sequence variants. These results show that chromosomal phase increases the sensitivity of a common laboratory test, an idea that could also advance cfDNA analyses for cancer detection.


Assuntos
Ácidos Nucleicos Livres , Diagnóstico Pré-Natal , Aneuploidia , Ácidos Nucleicos Livres/genética , Cromossomos , DNA/genética , Feminino , Feto , Humanos , Placenta , Gravidez , Diagnóstico Pré-Natal/métodos , Trissomia/diagnóstico , Trissomia/genética
5.
Cell Stem Cell ; 29(3): 472-486.e7, 2022 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-35176222

RESUMO

Despite their widespread use in research, there has not yet been a systematic genomic analysis of human embryonic stem cell (hESC) lines at a single-nucleotide resolution. We therefore performed whole-genome sequencing (WGS) of 143 hESC lines and annotated their single-nucleotide and structural genetic variants. We found that while a substantial fraction of hESC lines contained large deleterious structural variants, finer-scale structural and single-nucleotide variants (SNVs) that are ascertainable only through WGS analyses were present in hESC genomes and human blood-derived genomes at similar frequencies. Moreover, WGS allowed us to identify SNVs associated with cancer and other diseases that could alter cellular phenotypes and compromise the safety of hESC-derived cellular products transplanted into humans. As a resource to enable reproducible hESC research and safer translation, we provide a user-friendly WGS data portal and a data-driven scheme for cell line maintenance and selection.


Assuntos
Células-Tronco Embrionárias Humanas , Variação Genética , Genoma Humano/genética , Humanos , Nucleotídeos , Sequenciamento Completo do Genoma
6.
Proc Natl Acad Sci U S A ; 118(25)2021 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-34161264

RESUMO

Osmotic equilibrium and membrane potential in animal cells depend on concentration gradients of sodium (Na+) and potassium (K+) ions across the plasma membrane, a function catalyzed by the Na+,K+-ATPase α-subunit. Here, we describe ATP1A3 variants encoding dysfunctional α3-subunits in children affected by polymicrogyria, a developmental malformation of the cerebral cortex characterized by abnormal folding and laminar organization. To gain cell-biological insights into the spatiotemporal dynamics of prenatal ATP1A3 expression, we built an ATP1A3 transcriptional atlas of fetal cortical development using mRNA in situ hybridization and transcriptomic profiling of ∼125,000 individual cells with single-cell RNA sequencing (Drop-seq) from 11 areas of the midgestational human neocortex. We found that fetal expression of ATP1A3 is most abundant to a subset of excitatory neurons carrying transcriptional signatures of the developing subplate, yet also maintains expression in nonneuronal cell populations. Moving forward a year in human development, we profiled ∼52,000 nuclei from four areas of an infant neocortex and show that ATP1A3 expression persists throughout early postnatal development, most predominantly in inhibitory neurons, including parvalbumin interneurons in the frontal cortex. Finally, we discovered the heteromeric Na+,K+-ATPase pump complex may form nonredundant cell-type-specific α-ß isoform combinations, including α3-ß1 in excitatory neurons and α3-ß2 in inhibitory neurons. Together, the developmental malformation phenotype of affected individuals and single-cell ATP1A3 expression patterns point to a key role for α3 in human cortex development, as well as a cell-type basis for pre- and postnatal ATP1A3-associated diseases.


Assuntos
Encéfalo/embriologia , Encéfalo/enzimologia , ATPase Trocadora de Sódio-Potássio/metabolismo , Adulto , Encéfalo/anormalidades , Encéfalo/diagnóstico por imagem , Criança , Feminino , Feto/embriologia , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Lactente , Recém-Nascido , Interneurônios/metabolismo , Imageamento por Ressonância Magnética , Masculino , Mutação/genética , Neocórtex/embriologia , Neocórtex/enzimologia , Neurônios/metabolismo , Parvalbuminas/metabolismo , Fenótipo , Polimicrogiria/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Análise de Célula Única , ATPase Trocadora de Sódio-Potássio/genética
7.
Nat Med ; 27(6): 1012-1024, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34099924

RESUMO

Age is the dominant risk factor for infectious diseases, but the mechanisms linking age to infectious disease risk are incompletely understood. Age-related mosaic chromosomal alterations (mCAs) detected from genotyping of blood-derived DNA, are structural somatic variants indicative of clonal hematopoiesis, and are associated with aberrant leukocyte cell counts, hematological malignancy, and mortality. Here, we show that mCAs predispose to diverse types of infections. We analyzed mCAs from 768,762 individuals without hematological cancer at the time of DNA acquisition across five biobanks. Expanded autosomal mCAs were associated with diverse incident infections (hazard ratio (HR) 1.25; 95% confidence interval (CI) = 1.15-1.36; P = 1.8 × 10-7), including sepsis (HR 2.68; 95% CI = 2.25-3.19; P = 3.1 × 10-28), pneumonia (HR 1.76; 95% CI = 1.53-2.03; P = 2.3 × 10-15), digestive system infections (HR 1.51; 95% CI = 1.32-1.73; P = 2.2 × 10-9) and genitourinary infections (HR 1.25; 95% CI = 1.11-1.41; P = 3.7 × 10-4). A genome-wide association study of expanded mCAs identified 63 loci, which were enriched at transcriptional regulatory sites for immune cells. These results suggest that mCAs are a marker of impaired immunity and confer increased predisposition to infections.


Assuntos
Envelhecimento/genética , Doenças Transmissíveis/genética , Pneumonia/genética , Sepse/genética , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Envelhecimento/patologia , Bancos de Espécimes Biológicos , Aberrações Cromossômicas , Doenças Transmissíveis/complicações , Doenças Transmissíveis/microbiologia , Doenças do Sistema Digestório/epidemiologia , Doenças do Sistema Digestório/genética , Doenças do Sistema Digestório/microbiologia , Feminino , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Genótipo , Neoplasias Hematológicas/complicações , Neoplasias Hematológicas/genética , Neoplasias Hematológicas/microbiologia , Humanos , Masculino , Pessoa de Meia-Idade , Mosaicismo , Pneumonia/epidemiologia , Pneumonia/microbiologia , Fatores de Risco , Sepse/epidemiologia , Sepse/microbiologia , Anormalidades Urogenitais/epidemiologia , Anormalidades Urogenitais/genética , Anormalidades Urogenitais/microbiologia , Adulto Jovem
8.
Mol Cell ; 81(3): 426-441.e8, 2021 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-33545059

RESUMO

Eukaryotic genomes replicate via spatially and temporally regulated origin firing. Cyclin-dependent kinase (CDK) and Dbf4-dependent kinase (DDK) promote origin firing, whereas the S phase checkpoint limits firing to prevent nucleotide and RPA exhaustion. We used chemical genetics to interrogate human DDK with maximum precision, dissect its relationship with the S phase checkpoint, and identify DDK substrates. We show that DDK inhibition (DDKi) leads to graded suppression of origin firing and fork arrest. S phase checkpoint inhibition rescued origin firing in DDKi cells and DDK-depleted Xenopus egg extracts. DDKi also impairs RPA loading, nascent-strand protection, and fork restart. Via quantitative phosphoproteomics, we identify the BRCA1-associated (BRCA1-A) complex subunit MERIT40 and the cohesin accessory subunit PDS5B as DDK effectors in fork protection and restart. Phosphorylation neutralizes autoinhibition mediated by intrinsically disordered regions in both substrates. Our results reveal mechanisms through which DDK controls the duplication of large vertebrate genomes.


Assuntos
Replicação do DNA , Origem de Replicação , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Proteínas Mutadas de Ataxia Telangiectasia/genética , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Quinase 1 do Ponto de Checagem/genética , Quinase 1 do Ponto de Checagem/metabolismo , Replicação do DNA/efeitos dos fármacos , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Feminino , Células HCT116 , Células HEK293 , Células HeLa , Humanos , Fosforilação , Inibidores de Proteínas Quinases/farmacologia , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Pontos de Checagem da Fase S do Ciclo Celular , Especificidade por Substrato , Fatores de Tempo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Xenopus laevis
9.
medRxiv ; 2020 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-33236019

RESUMO

Age is the dominant risk factor for infectious diseases, but the mechanisms linking the two are incompletely understood1,2. Age-related mosaic chromosomal alterations (mCAs) detected from blood-derived DNA genotyping, are structural somatic variants associated with aberrant leukocyte cell counts, hematological malignancy, and mortality3-11. Whether mCAs represent independent risk factors for infection is unknown. Here we use genome-wide genotyping of blood DNA to show that mCAs predispose to diverse infectious diseases. We analyzed mCAs from 767,891 individuals without hematological cancer at DNA acquisition across four countries. Expanded mCA (cell fraction >10%) prevalence approached 4% by 60 years of age and was associated with diverse incident infections, including sepsis, pneumonia, and coronavirus disease 2019 (COVID-19) hospitalization. A genome-wide association study of expanded mCAs identified 63 significant loci. Germline genetic alleles associated with expanded mCAs were enriched at transcriptional regulatory sites for immune cells. Our results link mCAs with impaired immunity and predisposition to infections. Furthermore, these findings may also have important implications for the ongoing COVID-19 pandemic, particularly in prioritizing individual preventive strategies and evaluating immunization responses.

10.
Nature ; 584(7819): 136-141, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32581363

RESUMO

Clonally expanded blood cells that contain somatic mutations (clonal haematopoiesis) are commonly acquired with age and increase the risk of blood cancer1-9. The blood clones identified so far contain diverse large-scale mosaic chromosomal alterations (deletions, duplications and copy-neutral loss of heterozygosity (CN-LOH)) on all chromosomes1,2,5,6,9, but the sources of selective advantage that drive the expansion of most clones remain unknown. Here, to identify genes, mutations and biological processes that give selective advantage to mutant clones, we analysed genotyping data from the blood-derived DNA of 482,789 participants from the UK Biobank10. We identified 19,632 autosomal mosaic chromosomal alterations and analysed these for relationships to inherited genetic variation. We found 52 inherited, rare, large-effect coding or splice variants in 7 genes that were associated with greatly increased vulnerability to clonal haematopoiesis with specific acquired CN-LOH mutations. Acquired mutations systematically replaced the inherited risk alleles (at MPL) or duplicated them to the homologous chromosome (at FH, NBN, MRE11, ATM, SH2B3 and TM2D3). Three of the genes (MRE11, NBN and ATM) encode components of the MRN-ATM pathway, which limits cell division after DNA damage and telomere attrition11-13; another two (MPL and SH2B3) encode proteins that regulate the self-renewal of stem cells14-16. In addition, we found that CN-LOH mutations across the genome tended to cause chromosomal segments with alleles that promote the expansion of haematopoietic cells to replace their homologous (allelic) counterparts, increasing polygenic drive for blood-cell proliferation traits. Readily acquired mutations that replace chromosomal segments with their homologous counterparts seem to interact with pervasive inherited variation to create a challenge for lifelong cytopoiesis.


Assuntos
Evolução Clonal/genética , Células Clonais/metabolismo , Hematopoese/genética , Herança Multifatorial/genética , Adulto , Idoso , Alelos , Doenças Cardiovasculares/genética , Doenças Cardiovasculares/patologia , Divisão Celular/genética , Aberrações Cromossômicas , Células Clonais/citologia , Células Clonais/patologia , Feminino , Predisposição Genética para Doença , Neoplasias Hematológicas/genética , Neoplasias Hematológicas/patologia , Humanos , Perda de Heterozigosidade/genética , Masculino , Pessoa de Meia-Idade , Mosaicismo , Reino Unido
11.
Nature ; 584(7819): 130-135, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32581364

RESUMO

The extent to which the biology of oncogenesis and ageing are shaped by factors that distinguish human populations is unknown. Haematopoietic clones with acquired mutations become common with advancing age and can lead to blood cancers1-10. Here we describe shared and population-specific patterns of genomic mutations and clonal selection in haematopoietic cells on the basis of 33,250 autosomal mosaic chromosomal alterations that we detected in 179,417 Japanese participants in the BioBank Japan cohort and compared with analogous data from the UK Biobank. In this long-lived Japanese population, mosaic chromosomal alterations were detected in more than 35.0% (s.e.m., 1.4%) of individuals older than 90 years, which suggests that such clones trend towards inevitability with advancing age. Japanese and European individuals exhibited key differences in the genomic locations of mutations in their respective haematopoietic clones; these differences predicted the relative rates of chronic lymphocytic leukaemia (which is more common among European individuals) and T cell leukaemia (which is more common among Japanese individuals) in these populations. Three different mutational precursors of chronic lymphocytic leukaemia (including trisomy 12, loss of chromosomes 13q and 13q, and copy-neutral loss of heterozygosity) were between two and six times less common among Japanese individuals, which suggests that the Japanese and European populations differ in selective pressures on clones long before the development of clinically apparent chronic lymphocytic leukaemia. Japanese and British populations also exhibited very different rates of clones that arose from B and T cell lineages, which predicted the relative rates of B and T cell cancers in these populations. We identified six previously undescribed loci at which inherited variants predispose to mosaic chromosomal alterations that duplicate or remove the inherited risk alleles, including large-effect rare variants at NBN, MRE11 and CTU2 (odds ratio, 28-91). We suggest that selective pressures on clones are modulated by factors that are specific to human populations. Further genomic characterization of clonal selection and cancer in populations from around the world is therefore warranted.


Assuntos
Envelhecimento/genética , Aberrações Cromossômicas , Cromossomos Humanos/genética , Células Clonais/metabolismo , Genoma Humano/genética , Células-Tronco Hematopoéticas/metabolismo , Mutação , Idoso de 80 Anos ou mais , Alelos , Linhagem da Célula , Células Clonais/citologia , Células Clonais/patologia , Estudos de Coortes , Feminino , Loci Gênicos/genética , Hematopoese/genética , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/patologia , Humanos , Japão , Leucemia Linfocítica Crônica de Células B/genética , Leucemia Linfocítica Crônica de Células B/patologia , Leucemia de Células T/genética , Leucemia de Células T/patologia , Masculino , Mosaicismo , Reino Unido
12.
Nat Cancer ; 1(5): 493-506, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-33409501

RESUMO

Precursor states of Multiple Myeloma (MM) and its native tumor microenvironment need in-depth molecular characterization to better stratify and treat patients at risk. Using single-cell RNA sequencing of bone marrow cells from precursor stages, MGUS and smoldering myeloma (SMM), to full-blown MM alongside healthy donors, we demonstrate early immune changes during patient progression. We find NK cell abundance is frequently increased in early stages, and associated with altered chemokine receptor expression. As early as SMM, we show loss of GrK+ memory cytotoxic T-cells, and show their critical role in MM immunosurveillance in mouse models. Finally, we report MHC class II dysregulation in CD14+ monocytes, which results in T cell suppression in vitro. These results provide a comprehensive map of immune changes at play over the evolution of pre-malignant MM, which will help develop strategies for immune-based patient stratification.


Assuntos
Gamopatia Monoclonal de Significância Indeterminada , Mieloma Múltiplo , Mieloma Múltiplo Latente , Animais , Humanos , Camundongos , Gamopatia Monoclonal de Significância Indeterminada/genética , Mieloma Múltiplo/genética , Análise de Sequência de RNA , Microambiente Tumoral/genética
13.
Nature ; 575(7784): 652-657, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31748747

RESUMO

Mosaic loss of chromosome Y (LOY) in circulating white blood cells is the most common form of clonal mosaicism1-5, yet our knowledge of the causes and consequences of this is limited. Here, using a computational approach, we estimate that 20% of the male population represented in the UK Biobank study (n = 205,011) has detectable LOY. We identify 156 autosomal genetic determinants of LOY, which we replicate in 757,114 men of European and Japanese ancestry. These loci highlight genes that are involved in cell-cycle regulation and cancer susceptibility, as well as somatic drivers of tumour growth and targets of cancer therapy. We demonstrate that genetic susceptibility to LOY is associated with non-haematological effects on health in both men and women, which supports the hypothesis that clonal haematopoiesis is a biomarker of genomic instability in other tissues. Single-cell RNA sequencing identifies dysregulated expression of autosomal genes in leukocytes with LOY and provides insights into why clonal expansion of these cells may occur. Collectively, these data highlight the value of studying clonal mosaicism to uncover fundamental mechanisms that underlie cancer and other ageing-related diseases.


Assuntos
Deleção Cromossômica , Cromossomos Humanos Y/genética , Predisposição Genética para Doença/genética , Instabilidade Genômica/genética , Leucócitos/patologia , Mosaicismo , Adulto , Idoso , Biologia Computacional , Bases de Dados Genéticas , Feminino , Marcadores Genéticos/genética , Humanos , Masculino , Pessoa de Meia-Idade , Neoplasias/genética , Reino Unido
14.
Nature ; 559(7714): 350-355, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29995854

RESUMO

The selective pressures that shape clonal evolution in healthy individuals are largely unknown. Here we investigate 8,342 mosaic chromosomal alterations, from 50 kb to 249 Mb long, that we uncovered in blood-derived DNA from 151,202 UK Biobank participants using phase-based computational techniques (estimated false discovery rate, 6-9%). We found six loci at which inherited variants associated strongly with the acquisition of deletions or loss of heterozygosity in cis. At three such loci (MPL, TM2D3-TARSL2, and FRA10B), we identified a likely causal variant that acted with high penetrance (5-50%). Inherited alleles at one locus appeared to affect the probability of somatic mutation, and at three other loci to be objects of positive or negative clonal selection. Several specific mosaic chromosomal alterations were strongly associated with future haematological malignancies. Our results reveal a multitude of paths towards clonal expansions with a wide range of effects on human health.


Assuntos
Aberrações Cromossômicas , Células Clonais/citologia , Células Clonais/metabolismo , Hematopoese/genética , Mosaicismo , Adulto , Idoso , Alelos , Bancos de Espécimes Biológicos , Quebra Cromossômica , Sítios Frágeis do Cromossomo/genética , Cromossomos Humanos Par 10/genética , Feminino , Saúde , Neoplasias Hematológicas/genética , Neoplasias Hematológicas/mortalidade , Humanos , Masculino , Pessoa de Meia-Idade , Penetrância , Reino Unido
15.
Methods Mol Biol ; 1768: 143-160, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29717442

RESUMO

Many genomic segments vary in copy number among individuals of the same species, or between cancer and normal cells within the same person. Correctly measuring this copy number variation is critical for studying its genetic properties, its distribution in populations and its relationship to phenotypes. Droplet digital PCR (ddPCR) enables accurate measurement of copy number by partitioning a PCR reaction into thousands of nanoliter-scale droplets, so that a genomic sequence of interest-whose presence or absence in a droplet is determined by end-point fluorescence-can be digitally counted. Here, we describe how we analyze copy number variants using ddPCR and review the design of effective assays, the performance of ddPCR with those assays, the optimization of reactions, and the interpretation of data.


Assuntos
Variações do Número de Cópias de DNA/genética , DNA/isolamento & purificação , Reação em Cadeia da Polimerase/métodos , Variação Biológica Individual , Variação Biológica da População/genética , Dosagem de Genes/genética , Humanos , Reação em Cadeia da Polimerase/instrumentação
16.
Sci Transl Med ; 10(436)2018 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-29643232

RESUMO

Thrombosis is a major cause of morbidity and mortality in Philadelphia chromosome-negative myeloproliferative neoplasms (MPNs), clonal disorders of hematopoiesis characterized by activated Janus kinase (JAK)-signal transducer and activator of transcription (STAT) signaling. Neutrophil extracellular trap (NET) formation, a component of innate immunity, has been linked to thrombosis. We demonstrate that neutrophils from patients with MPNs are primed for NET formation, an effect blunted by pharmacological inhibition of JAK signaling. Mice with conditional knock-in of Jak2V617F, the most common molecular driver of MPN, have an increased propensity for NET formation and thrombosis. Inhibition of JAK-STAT signaling with the clinically available JAK2 inhibitor ruxolitinib abrogated NET formation and reduced thrombosis in a deep vein stenosis murine model. We further show that expression of PAD4, a protein required for NET formation, is increased in JAK2V617F-expressing neutrophils and that PAD4 is required for Jak2V617F-driven NET formation and thrombosis in vivo. Finally, in a population study of more than 10,000 individuals without a known myeloid disorder, JAK2V617F-positive clonal hematopoiesis was associated with an increased incidence of thrombosis. In aggregate, our results link JAK2V617F expression to NET formation and thrombosis and suggest that JAK2 inhibition may reduce thrombosis in MPNs through cell-intrinsic effects on neutrophil function.


Assuntos
Armadilhas Extracelulares/metabolismo , Neoplasias Hematológicas/metabolismo , Transtornos Mieloproliferativos/metabolismo , Trombose/metabolismo , Animais , Estudos de Casos e Controles , Proliferação de Células/fisiologia , Feminino , Neoplasias Hematológicas/tratamento farmacológico , Hidrolases/metabolismo , Janus Quinase 2/metabolismo , Janus Quinases/antagonistas & inibidores , Janus Quinases/metabolismo , Camundongos , Transtornos Mieloproliferativos/tratamento farmacológico , Nitrilas , Proteína-Arginina Desiminase do Tipo 4 , Pirazóis/uso terapêutico , Pirimidinas , Fatores de Transcrição STAT/metabolismo , Transdução de Sinais/fisiologia , Trombose/tratamento farmacológico
17.
Nature ; 545(7653): 229-233, 2017 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-28445466

RESUMO

Human pluripotent stem cells (hPS cells) can self-renew indefinitely, making them an attractive source for regenerative therapies. This expansion potential has been linked with the acquisition of large copy number variants that provide mutated cells with a growth advantage in culture. The nature, extent and functional effects of other acquired genome sequence mutations in cultured hPS cells are not known. Here we sequence the protein-coding genes (exomes) of 140 independent human embryonic stem cell (hES cell) lines, including 26 lines prepared for potential clinical use. We then apply computational strategies for identifying mutations present in a subset of cells in each hES cell line. Although such mosaic mutations were generally rare, we identified five unrelated hES cell lines that carried six mutations in the TP53 gene that encodes the tumour suppressor P53. The TP53 mutations we observed are dominant negative and are the mutations most commonly seen in human cancers. We found that the TP53 mutant allelic fraction increased with passage number under standard culture conditions, suggesting that the P53 mutations confer selective advantage. We then mined published RNA sequencing data from 117 hPS cell lines, and observed another nine TP53 mutations, all resulting in coding changes in the DNA-binding domain of P53. In three lines, the allelic fraction exceeded 50%, suggesting additional selective advantage resulting from the loss of heterozygosity at the TP53 locus. As the acquisition and expansion of cancer-associated mutations in hPS cells may go unnoticed during most applications, we suggest that careful genetic characterization of hPS cells and their differentiated derivatives be carried out before clinical use.


Assuntos
Genes Dominantes/genética , Genes p53 , Células-Tronco Embrionárias Humanas/metabolismo , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Mutação/genética , Seleção Genética , Proteína Supressora de Tumor p53/genética , Alelos , Contagem de Células , Diferenciação Celular/genética , Divisão Celular/genética , Linhagem Celular , DNA/metabolismo , Análise Mutacional de DNA , Exoma/genética , Células-Tronco Embrionárias Humanas/citologia , Humanos , Perda de Heterozigosidade/genética , Mosaicismo , Neoplasias/genética , Domínios Proteicos , Proteína Supressora de Tumor p53/química , Proteína Supressora de Tumor p53/metabolismo
18.
PLoS One ; 10(3): e0118270, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25739099

RESUMO

Determining the chromosomal phase of pairs of sequence variants - the arrangement of specific alleles as haplotypes - is a routine challenge in molecular genetics. Here we describe Drop-Phase, a molecular method for quickly ascertaining the phase of pairs of DNA sequence variants (separated by 1-200 kb) without cloning or manual single-molecule dilution. In each Drop-Phase reaction, genomic DNA segments are isolated in tens of thousands of nanoliter-sized droplets together with allele-specific fluorescence probes, in a single reaction well. Physically linked alleles partition into the same droplets, revealing their chromosomal phase in the co-distribution of fluorophores across droplets. We demonstrated the accuracy of this method by phasing members of trios (revealing 100% concordance with inheritance information), and demonstrate a common clinical application by phasing CFTR alleles at genomic distances of 11-116 kb in the genomes of cystic fibrosis patients. Drop-Phase is rapid (requiring less than 4 hours), scalable (to hundreds of samples), and effective at long genomic distances (200 kb).


Assuntos
Algoritmos , Cromossomos/genética , Genômica/métodos , Linhagem Celular , Humanos , Polimorfismo de Nucleotídeo Único , Análise de Sequência de DNA , Fatores de Tempo
20.
J Pediatr ; 166(4): 1048-54.e1-5, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25681199

RESUMO

OBJECTIVES: To test the hypothesis that somatic phosphatidylinositol-4,5-bisphospate 3-kinase, catalytic subunit alpha (PIK3CA) mutations would be found in patients with more common disorders including isolated lymphatic malformation (LM) and Klippel-Trenaunay syndrome (KTS). STUDY DESIGN: We used next generation sequencing, droplet digital polymerase chain reaction, and single molecule molecular inversion probes to search for somatic PIK3CA mutations in affected tissue from patients seen at Boston Children's Hospital who had an isolated LM (n = 17), KTS (n = 21), fibro-adipose vascular anomaly (n = 8), or congenital lipomatous overgrowth with vascular, epidermal, and skeletal anomalies syndrome (n = 33), the disorder for which we first identified somatic PIK3CA mutations. We also screened 5 of the more common PIK3CA mutations in a second cohort of patients with LM (n = 31) from Seattle Children's Hospital. RESULTS: Most individuals from Boston Children's Hospital who had isolated LM (16/17) or LM as part of a syndrome, such as KTS (19/21), fibro-adipose vascular anomaly (5/8), and congenital lipomatous overgrowth with vascular, epidermal, and skeletal anomalies syndrome (31/33) were somatic mosaic for PIK3CA mutations, with 5 specific PIK3CA mutations accounting for ∼ 80% of cases. Seventy-four percent of patients with LM from Seattle Children's Hospital also were somatic mosaic for 1 of 5 specific PIK3CA mutations. Many affected tissue specimens from both cohorts contained fewer than 10% mutant cells. CONCLUSIONS: Somatic PIK3CA mutations are the most common cause of isolated LMs and disorders in which LM is a component feature. Five PIK3CA mutations account for most cases. The search for causal mutations requires sampling of affected tissues and techniques that are capable of detecting low-level somatic mosaicism because the abundance of mutant cells in a malformed tissue can be low.


Assuntos
Anormalidades Múltiplas , DNA/genética , Síndrome de Klippel-Trenaunay-Weber/genética , Anormalidades Linfáticas/genética , Mutação , Fosfatidilinositol 3-Quinases/genética , Malformações Vasculares/genética , Criança , Pré-Escolar , Classe I de Fosfatidilinositol 3-Quinases , Feminino , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Lactente , Síndrome de Klippel-Trenaunay-Weber/diagnóstico , Síndrome de Klippel-Trenaunay-Weber/metabolismo , Anormalidades Linfáticas/diagnóstico , Anormalidades Linfáticas/metabolismo , Masculino , Fosfatidilinositol 3-Quinases/metabolismo , Reação em Cadeia da Polimerase , Malformações Vasculares/diagnóstico , Malformações Vasculares/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA