Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Microbiome ; 8(1): 88, 2020 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-32513301

RESUMO

BACKGROUND: Bacteroides thetaiotaomicron (Bt) is a prominent member of the human intestinal microbiota that, like all gram-negative bacteria, naturally generates nanosized outer membrane vesicles (OMVs) which bud off from the cell surface. Importantly, OMVs can cross the intestinal epithelial barrier to mediate microbe-host cell crosstalk involving both epithelial and immune cells to help maintain intestinal homeostasis. Here, we have examined the interaction between Bt OMVs and blood or colonic mucosa-derived dendritic cells (DC) from healthy individuals and patients with Crohn's disease (CD) or ulcerative colitis (UC). RESULTS: In healthy individuals, Bt OMVs stimulated significant (p < 0.05) IL-10 expression by colonic DC, whereas in peripheral blood-derived DC they also stimulated significant (p < 0.001 and p < 0.01, respectively) expression of IL-6 and the activation marker CD80. Conversely, in UC Bt OMVs were unable to elicit IL-10 expression by colonic DC. There were also reduced numbers of CD103+ DC in the colon of both UC and CD patients compared to controls, supporting a loss of regulatory DC in both diseases. Furthermore, in CD and UC, Bt OMVs elicited a significantly lower proportion of DC which expressed IL-10 (p < 0.01 and p < 0.001, respectively) in blood compared to controls. These alterations in DC responses to Bt OMVs were seen in patients with inactive disease, and thus are indicative of intrinsic defects in immune responses to this commensal in inflammatory bowel disease (IBD). CONCLUSIONS: Overall, our findings suggest a key role for OMVs generated by the commensal gut bacterium Bt in directing a balanced immune response to constituents of the microbiota locally and systemically during health which is altered in IBD patients. Video Abstract.


Assuntos
Membrana Externa Bacteriana , Bacteroides thetaiotaomicron , Células Dendríticas , Doenças Inflamatórias Intestinais , Membrana Externa Bacteriana/imunologia , Colite Ulcerativa , Doença de Crohn , Células Dendríticas/microbiologia , Vesículas Extracelulares/imunologia , Feminino , Humanos , Doenças Inflamatórias Intestinais/microbiologia , Mucosa Intestinal , Masculino
2.
J Crohns Colitis ; 14(4): 525-537, 2020 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-31665283

RESUMO

BACKGROUND AND AIMS: The intestinal microbiota is closely associated with resident memory lymphocytes in mucosal tissue. We sought to understand how acquired cellular and humoral immunity to the microbiota differ in health versus inflammatory bowel disease [IBD]. METHODS: Resident memory T cells [Trm] in colonic biopsies and local antibody responses to intraepithelial microbes were analysed. Systemic antigen-specific immune T and B cell memory to a panel of commensal microbes was assessed. RESULTS: Systemically, healthy blood showed CD4 and occasional CD8 memory T cell responses to selected intestinal bacteria, but few memory B cell responses. In IBD, CD8 memory T cell responses decreased although B cell responses and circulating plasmablasts increased. Possibly secondary to loss of systemic CD8 T cell responses in IBD, dramatically reduced numbers of mucosal CD8+ Trm and γδ T cells were observed. IgA responses to intraepithelial bacteria were increased. Colonic Trm expressed CD39 and CD73 ectonucleotidases, characteristic of regulatory T cells. Cytokines/factors required for Trm differentiation were identified, and in vitro-generated Trm expressed regulatory T cell function via CD39. Cognate interaction between T cells and dendritic cells induced T-bet expression in dendritic cells, a key mechanism in regulating cell-mediated mucosal responses. CONCLUSIONS: A previously unrecognised imbalance exists between cellular and humoral immunity to the microbiota in IBD, with loss of mucosal T cell-mediated barrier immunity and uncontrolled antibody responses. Regulatory function of Trm may explain their association with intestinal health. Promoting Trm and their interaction with dendritic cells, rather than immunosuppression, may reinforce tissue immunity, improve barrier function, and prevent B cell dysfunction in microbiota-associated disease and IBD aetiology.


Assuntos
Microbioma Gastrointestinal/imunologia , Imunidade Celular/imunologia , Imunidade Humoral/imunologia , Doenças Inflamatórias Intestinais , Mucosa Intestinal , Linfócitos T Reguladores/imunologia , 5'-Nucleotidase/análise , Adulto , Antígenos CD/análise , Apirase/análise , Biópsia/métodos , Linfócitos T CD8-Positivos/imunologia , Células Dendríticas/imunologia , Feminino , Humanos , Memória Imunológica/fisiologia , Doenças Inflamatórias Intestinais/imunologia , Doenças Inflamatórias Intestinais/patologia , Mucosa Intestinal/imunologia , Mucosa Intestinal/patologia , Masculino , Pessoa de Meia-Idade
3.
Ann N Y Acad Sci ; 1352: 1-12, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26415028

RESUMO

Progress in nutritional science, genetics, computer science, and behavioral economics can be leveraged to address the challenge of noncommunicable disease. This report highlights the connection between nutrition and the complex science of preventing disease and discusses the promotion of optimal metabolic health, building on input from several complementary disciplines. The discussion focuses on (1) the basic science of optimal metabolic health, including data from gene-diet interactions, microbiome, and epidemiological research in nutrition, with the goal of defining better targets and interventions, and (2) how nutrition, from pharma to lifestyle, can build on systems science to address complex issues.


Assuntos
Interação Gene-Ambiente , Estilo de Vida , Doenças Metabólicas , Microbiota , Animais , Humanos , Doenças Metabólicas/epidemiologia , Doenças Metabólicas/genética , Doenças Metabólicas/metabolismo , Doenças Metabólicas/prevenção & controle , Ciências da Nutrição/métodos
4.
Microbiologyopen ; 4(1): 12-27, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25461615

RESUMO

Alterations in the gut microbiota have been recently linked to oral iron. We conducted two feeding studies including an initial diet-induced iron-depletion period followed by supplementation with nanoparticulate tartrate-modified ferrihydrite (Nano Fe(III): considered bioavailable to host but not bacteria) or soluble ferrous sulfate (FeSO4: considered bioavailable to both host and bacteria). We applied denaturing gradient gel electrophoresis and fluorescence in situ hybridization for study-1 and 454-pyrosequencing of fecal 16S rRNA in study-2. In study-1, the within-community microbial diversity increased with FeSO4 (P = 0.0009) but not with Nano Fe(III) supplementation. This was confirmed in study-2, where we also showed that iron depletion at weaning imprinted significantly lower within- and between-community microbial diversity compared to mice weaned onto the iron-sufficient reference diet (P < 0.0001). Subsequent supplementation with FeSO4 partially restored the within-community diversity (P = 0.006 in relation to the continuously iron-depleted group) but not the between-community diversity, whereas Nano Fe(III) had no effect. We conclude that (1) dietary iron depletion at weaning imprints low diversity in the microbiota that is not, subsequently, easily recovered; (2) in the absence of gastrointestinal disease iron supplementation does not negatively impact the microbiota; and (3) Nano Fe(III) is less available to the gut microbiota.


Assuntos
Bactérias/efeitos dos fármacos , Compostos Férricos/administração & dosagem , Ferro da Dieta/metabolismo , Microbiota , Administração Oral , Animais , Bactérias/genética , Disponibilidade Biológica , Fezes/microbiologia , Compostos Férricos/farmacocinética , Masculino , Nanopartículas Metálicas/administração & dosagem , Camundongos , Camundongos Endogâmicos C57BL , Ratos , Ratos Sprague-Dawley , Desmame
5.
Microbiology (Reading) ; 161(Pt 3): 565-79, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25533445

RESUMO

This study monitored the dynamics and diversity of the human faecal 'Atopobium cluster' over a 3-month period using a polyphasic approach. Fresh faecal samples were collected fortnightly from 13 healthy donors (six males and seven females) aged between 26 and 61 years. FISH was used to enumerate total (EUB338mix) and 'Atopobium cluster' (ATO291) bacteria, with counts ranging between 1.12×10(11) and 9.95×10(11), and 1.03×10(9) and 1.16×10(11) cells (g dry weight faeces)(-1), respectively. The 'Atopobium cluster' population represented 0.2-22 % of the total bacteria, with proportions donor-dependent. Denaturing gradient gel electrophoresis (DGGE) using 'Atopobium cluster'-specific primers demonstrated faecal populations of these bacteria were relatively stable, with bands identified as Collinsella aerofaciens, Collinsella intestinalis/Collinsella stercoris, Collinsella tanakaei, Coriobacteriaceae sp. PEAV3-3, Eggerthella lenta, Gordonibacter pamelaeae, Olsenella profusa, Olsenella uli and Paraeggerthella hongkongensis in the DGGE profiles of individuals. Colony PCR was used to identify 'Atopobium cluster' bacteria isolated from faeces (n = 224 isolates). 16S rRNA gene sequence analysis of isolates demonstrated Collinsella aerofaciens represented the predominant (88 % of isolates) member of the 'Atopobium cluster' found in human faeces, being found in nine individuals. Eggerthella lenta was identified in three individuals (3.6 % of isolates). Isolates of Collinsella tanakaei, an 'Enorma' sp. and representatives of novel species belonging to the 'Atopobium cluster' were also identified in the study. Phenotypic characterization of the isolates demonstrated their highly saccharolytic nature and heterogeneous phenotypic profiles, and 97 % of the isolates displayed lipase activity.


Assuntos
Actinobacteria/isolamento & purificação , Bactérias/isolamento & purificação , Biodiversidade , Fezes/microbiologia , Microbiota , Actinobacteria/classificação , Actinobacteria/genética , Adulto , Bactérias/classificação , Bactérias/genética , DNA Bacteriano/genética , DNA Ribossômico/genética , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Dados de Sequência Molecular , Fenótipo , Filogenia , RNA Ribossômico 16S/genética
6.
Br J Nutr ; 104 Suppl 2: S1-63, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20920376

RESUMO

The different compartments of the gastrointestinal tract are inhabited by populations of micro-organisms. By far the most important predominant populations are in the colon where a true symbiosis with the host exists that is a key for well-being and health. For such a microbiota, 'normobiosis' characterises a composition of the gut 'ecosystem' in which micro-organisms with potential health benefits predominate in number over potentially harmful ones, in contrast to 'dysbiosis', in which one or a few potentially harmful micro-organisms are dominant, thus creating a disease-prone situation. The present document has been written by a group of both academic and industry experts (in the ILSI Europe Prebiotic Expert Group and Prebiotic Task Force, respectively). It does not aim to propose a new definition of a prebiotic nor to identify which food products are classified as prebiotic but rather to validate and expand the original idea of the prebiotic concept (that can be translated in 'prebiotic effects'), defined as: 'The selective stimulation of growth and/or activity(ies) of one or a limited number of microbial genus(era)/species in the gut microbiota that confer(s) health benefits to the host.' Thanks to the methodological and fundamental research of microbiologists, immense progress has very recently been made in our understanding of the gut microbiota. A large number of human intervention studies have been performed that have demonstrated that dietary consumption of certain food products can result in statistically significant changes in the composition of the gut microbiota in line with the prebiotic concept. Thus the prebiotic effect is now a well-established scientific fact. The more data are accumulating, the more it will be recognised that such changes in the microbiota's composition, especially increase in bifidobacteria, can be regarded as a marker of intestinal health. The review is divided in chapters that cover the major areas of nutrition research where a prebiotic effect has tentatively been investigated for potential health benefits. The prebiotic effect has been shown to associate with modulation of biomarkers and activity(ies) of the immune system. Confirming the studies in adults, it has been demonstrated that, in infant nutrition, the prebiotic effect includes a significant change of gut microbiota composition, especially an increase of faecal concentrations of bifidobacteria. This concomitantly improves stool quality (pH, SCFA, frequency and consistency), reduces the risk of gastroenteritis and infections, improves general well-being and reduces the incidence of allergic symptoms such as atopic eczema. Changes in the gut microbiota composition are classically considered as one of the many factors involved in the pathogenesis of either inflammatory bowel disease or irritable bowel syndrome. The use of particular food products with a prebiotic effect has thus been tested in clinical trials with the objective to improve the clinical activity and well-being of patients with such disorders. Promising beneficial effects have been demonstrated in some preliminary studies, including changes in gut microbiota composition (especially increase in bifidobacteria concentration). Often associated with toxic load and/or miscellaneous risk factors, colon cancer is another pathology for which a possible role of gut microbiota composition has been hypothesised. Numerous experimental studies have reported reduction in incidence of tumours and cancers after feeding specific food products with a prebiotic effect. Some of these studies (including one human trial) have also reported that, in such conditions, gut microbiota composition was modified (especially due to increased concentration of bifidobacteria). Dietary intake of particular food products with a prebiotic effect has been shown, especially in adolescents, but also tentatively in postmenopausal women, to increase Ca absorption as well as bone Ca accretion and bone mineral density. Recent data, both from experimental models and from human studies, support the beneficial effects of particular food products with prebiotic properties on energy homaeostasis, satiety regulation and body weight gain. Together, with data in obese animals and patients, these studies support the hypothesis that gut microbiota composition (especially the number of bifidobacteria) may contribute to modulate metabolic processes associated with syndrome X, especially obesity and diabetes type 2. It is plausible, even though not exclusive, that these effects are linked to the microbiota-induced changes and it is feasible to conclude that their mechanisms fit into the prebiotic effect. However, the role of such changes in these health benefits remains to be definitively proven. As a result of the research activity that followed the publication of the prebiotic concept 15 years ago, it has become clear that products that cause a selective modification in the gut microbiota's composition and/or activity(ies) and thus strengthens normobiosis could either induce beneficial physiological effects in the colon and also in extra-intestinal compartments or contribute towards reducing the risk of dysbiosis and associated intestinal and systemic pathologies.


Assuntos
Trato Gastrointestinal/microbiologia , Fenômenos Fisiológicos da Nutrição/efeitos dos fármacos , Valor Nutritivo , Prebióticos , Animais , Fermentação , Gastroenteropatias/prevenção & controle , Humanos , Sistema Imunitário/fisiologia , Absorção Intestinal , Minerais/metabolismo , Neoplasias/prevenção & controle , Obesidade/prevenção & controle
7.
Microbiology (Reading) ; 156(Pt 11): 3329-3341, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20864478

RESUMO

Bifidobacteria in the infant faecal microbiota have been the focus of much interest, especially during the exclusive milk-feeding period and in relation to the fortification of infant formulae to better mimic breast milk. However, longitudinal studies examining the diversity and dynamics of the Bifidobacterium population of infants are lacking, particularly in relation to the effects of weaning. Using a polyphasic strategy, the Bifidobacterium populations of breast- and formula-fed infants were examined during the first 18 months of life. Bifidobacterium-specific denaturing gradient gel electrophoresis demonstrated that breast-fed infants harboured greater diversity than formula-fed infants and the diversity of the infants' Bifidobacterium populations increased with weaning. Twenty-seven distinctive banding profiles were observed from ∼1100 infant isolates using ribosomal intergenic spacer analysis, 14 biotypes of which were confirmed to be members of the genus Bifidobacterium. Two profiles (H, Bifidobacterium longum subsp. infantis; and I, Bifidobacterium bifidum) were common culturable biotypes, seen in 9/10 infants, while profile E (Bifidobacterium breve) was common among breast-fed infants. Overall, inter- and intra-individual differences were observed in the Bifidobacterium populations of infants between 1 and 18 months of age, although weaning was associated with increased diversity of the infant Bifidobacterium populations. Breast-fed infants generally harboured a more complex Bifidobacterium microbiota than formula-fed infants.


Assuntos
Bifidobacterium/isolamento & purificação , Aleitamento Materno , Fezes/microbiologia , Fórmulas Infantis , Bifidobacterium/genética , Bifidobacterium/crescimento & desenvolvimento , Biodiversidade , DNA Bacteriano/genética , DNA Espaçador Ribossômico/genética , Eletroforese em Gel de Gradiente Desnaturante , Humanos , Lactente , Estudos Longitudinais , Especificidade da Espécie , Desmame
8.
Appl Environ Microbiol ; 70(9): 5659-66, 2004 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-15345455

RESUMO

1,2-sn-Diacylglycerols (DAGs) are activators of protein kinase C (PKC), which is involved in the regulation of colonic mucosal proliferation. Extracellular DAG has been shown to stimulate the growth of cancer cell lines in vitro and may therefore play an important role in tumor promotion. DAG has been detected in human fecal extracts and is thought to be of microbial origin. Hitherto, no attempts have been made to identify the predominant fecal bacterial species involved in its production. We therefore used anaerobic batch culture systems to determine whether fecal bacteria could utilize phosphatidylcholine (0.5% [wt/vol]) to produce DAG. Production was found to be dependent upon the presence of the substrate and was enhanced in the presence of high concentrations of deoxycholate (5 and 10 mM) in the growth medium. Moreover, its production increased with the pH, and large inter- and intraindividual variations were observed between cultures seeded with inocula from different individuals. Clostridia and Escherichia coli multiplied in the fermentation systems, indicating their involvement in phosphatidylcholine metabolism. On the other hand, there was a significant decrease in the number of Bifidobacterium spp. in the presence of phosphatidylcholine. Pure-culture experiments showed that 10 of the 12 strains yielding the highest DAG levels (>50 nmol/ml) were isolated from batch culture enrichments run at pH 8.5. We found that the strains capable of producing large amounts of DAG were predominantly Clostridium bifermentans (8 of 12), followed by Escherichia coli (2 of 12). Interestingly, one DAG-producing strain was Bifidobacterium infantis, which is often considered a beneficial gut microorganism. Our results have provided further evidence that fecal bacteria can produce DAG and that specific bacterial groups are involved in this process. Future strategies to reduce DAG formation in the gut should target these species.


Assuntos
Bactérias/metabolismo , Diglicerídeos/biossíntese , Fezes/microbiologia , Fosfatidilcolinas/metabolismo , Bactérias/classificação , Bactérias/isolamento & purificação , Humanos , Concentração de Íons de Hidrogênio , Cinética , Especificidade da Espécie
9.
Syst Appl Microbiol ; 27(1): 72-83, 2004 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-15053324

RESUMO

It has long been thought that the genera Mobiluncus and Falcivibrio contain the same organisms. Using a polyphasic approach, it was found that Mobiluncus curtisii and Mobiluncus mulieris were the same as Falcivibrio vaginalis and Falcivibrio grandis, respectively. As the genus name Mobiluncus takes precedence, it is proposed that F. vaginalis and F. grandis be transferred to the genus Mobiluncus. In agreement with previous studies, results from phenotypic tests did not support the separation of M. curtisii strains into its two subspecies, M. curtisii subsp. curtisii and M. curtisii subsp. holmesii. Phenotypic complexity within M. curtisii dictates that the species should be treated as a complex until more in-depth analyses of the species have been performed. Phylogenetic analyses, based on 16S rRNA gene sequences, demonstrated that the genus Mobiluncus was associated with Varibaculum cambriense and the two subspecies of Actinomyces neuii, and that A. neuii is only distantly related to Actinomyces sensu stricto.


Assuntos
Bacteroides/classificação , Mobiluncus/classificação , Proteínas de Bactérias/metabolismo , Bacteroides/genética , Bacteroides/metabolismo , Sequência de Bases , DNA Bacteriano/química , DNA Bacteriano/genética , Eletroforese em Gel de Campo Pulsado , Eletroforese em Gel de Poliacrilamida , Mobiluncus/genética , Mobiluncus/metabolismo , Dados de Sequência Molecular , Filogenia , Reação em Cadeia da Polimerase , RNA Ribossômico 16S/química , RNA Ribossômico 16S/genética , Alinhamento de Sequência
10.
Int J Syst Evol Microbiol ; 52(Pt 3): 995-999, 2002 May.
Artigo em Inglês | MEDLINE | ID: mdl-12054269

RESUMO

Five strains of an unusual catalase-negative Gram-positive asporogenous rod-shaped bacterium from human sources were subjected to a polyphasic taxonomic study. The presence of fructose-6-phosphate phosphoketolase, a key enzyme of bifidobacterial hexose metabolism, indicated the strains were members of the genus Bifidobacterium but they did not correspond to any of the recognized species of this genus on the basis of biochemical profiles and whole-cell protein analyses. Comparative 16S rRNA gene sequencing confirmed the placement of the isolates in the genus Bifidobacterium, and demonstrated they represent a hitherto unknown subline within the genus displaying > 5% sequence divergence with recognized species. Based on both phenotypic and phylogenetic criteria, it is proposed that the isolates recovered from human sources be classified as a new species, Bifidobacterium scardovii sp. nov.; the type strain is CCUG 13008T (= DSM 13734T).


Assuntos
Bifidobacterium/classificação , Bifidobacterium/genética , Sangue/microbiologia , Quadril/microbiologia , Urina/microbiologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Técnicas de Tipagem Bacteriana , DNA Ribossômico/análise , Feminino , Humanos , Pessoa de Meia-Idade , Dados de Sequência Molecular , Fenótipo , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA