Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
EBioMedicine ; 100: 104956, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38199042

RESUMO

BACKGROUND: Smoking impacts DNA methylation, but data are lacking on smoking-related differential methylation by sex or dietary intake, recent smoking cessation (<1 year), persistence of differential methylation from in utero smoking exposure, and effects of environmental tobacco smoke (ETS). METHODS: We meta-analysed data from up to 15,014 adults across 5 cohorts with DNA methylation measured in blood using Illumina's EPIC array for current smoking (2560 exposed), quit < 1 year (500 exposed), in utero (286 exposed), and ETS exposure (676 exposed). We also evaluated the interaction of current smoking with sex or diet (fibre, folate, and vitamin C). FINDINGS: Using false discovery rate (FDR < 0.05), 65,857 CpGs were differentially methylated in relation to current smoking, 4025 with recent quitting, 594 with in utero exposure, and 6 with ETS. Most current smoking CpGs attenuated within a year of quitting. CpGs related to in utero exposure in adults were enriched for those previously observed in newborns. Differential methylation by current smoking at 4-71 CpGs may be modified by sex or dietary intake. Nearly half (35-50%) of differentially methylated CpGs on the 450 K array were associated with blood gene expression. Current smoking and in utero smoking CpGs implicated 3049 and 1067 druggable targets, including chemotherapy drugs. INTERPRETATION: Many smoking-related methylation sites were identified with Illumina's EPIC array. Most signals revert to levels observed in never smokers within a year of cessation. Many in utero smoking CpGs persist into adulthood. Smoking-related druggable targets may provide insights into cancer treatment response and shared mechanisms across smoking-related diseases. FUNDING: Intramural Research Program of the National Institutes of Health, Norwegian Ministry of Health and Care Services and the Ministry of Education and Research, Chief Scientist Office of the Scottish Government Health Directorates and the Scottish Funding Council, Medical Research Council UK and the Wellcome Trust.


Assuntos
Abandono do Hábito de Fumar , Poluição por Fumaça de Tabaco , Adulto , Humanos , Recém-Nascido , Metilação de DNA , Epigênese Genética , Fumar/efeitos adversos , Fumar/genética , Fumar Tabaco , Ilhas de CpG
2.
PLoS Med ; 20(7): e1004247, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37410739

RESUMO

BACKGROUND: DNA methylation is a dynamic epigenetic mechanism that occurs at cytosine-phosphate-guanine dinucleotide (CpG) sites. Epigenome-wide association studies (EWAS) investigate the strength of association between methylation at individual CpG sites and health outcomes. Although blood methylation may act as a peripheral marker of common disease states, previous EWAS have typically focused only on individual conditions and have had limited power to discover disease-associated loci. This study examined the association of blood DNA methylation with the prevalence of 14 disease states and the incidence of 19 disease states in a single population of over 18,000 Scottish individuals. METHODS AND FINDINGS: DNA methylation was assayed at 752,722 CpG sites in whole-blood samples from 18,413 volunteers in the family-structured, population-based cohort study Generation Scotland (age range 18 to 99 years). EWAS tested for cross-sectional associations between baseline CpG methylation and 14 prevalent disease states, and for longitudinal associations between baseline CpG methylation and 19 incident disease states. Prevalent cases were self-reported on health questionnaires at the baseline. Incident cases were identified using linkage to Scottish primary (Read 2) and secondary (ICD-10) care records, and the censoring date was set to October 2020. The mean time-to-diagnosis ranged from 5.0 years (for chronic pain) to 11.7 years (for Coronavirus Disease 2019 (COVID-19) hospitalisation). The 19 disease states considered in this study were selected if they were present on the World Health Organisation's 10 leading causes of death and disease burden or included in baseline self-report questionnaires. EWAS models were adjusted for age at methylation typing, sex, estimated white blood cell composition, population structure, and 5 common lifestyle risk factors. A structured literature review was also conducted to identify existing EWAS for all 19 disease states tested. The MEDLINE, Embase, Web of Science, and preprint servers were searched to retrieve relevant articles indexed as of March 27, 2023. Fifty-four of approximately 2,000 indexed articles met our inclusion criteria: assayed blood-based DNA methylation, had >20 individuals in each comparison group, and examined one of the 19 conditions considered. First, we assessed whether the associations identified in our study were reported in previous studies. We identified 69 associations between CpGs and the prevalence of 4 conditions, of which 58 were newly described. The conditions were breast cancer, chronic kidney disease, ischemic heart disease, and type 2 diabetes mellitus. We also uncovered 64 CpGs that associated with the incidence of 2 disease states (COPD and type 2 diabetes), of which 56 were not reported in the surveyed literature. Second, we assessed replication across existing studies, which was defined as the reporting of at least 1 common site in >2 studies that examined the same condition. Only 6/19 disease states had evidence of such replication. The limitations of this study include the nonconsideration of medication data and a potential lack of generalizability to individuals that are not of Scottish and European ancestry. CONCLUSIONS: We discovered over 100 associations between blood methylation sites and common disease states, independently of major confounding risk factors, and a need for greater standardisation among EWAS on human disease.


Assuntos
COVID-19 , Diabetes Mellitus Tipo 2 , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Humanos , Pessoa de Meia-Idade , Adulto Jovem , Estudos de Coortes , Ilhas de CpG/genética , Estudos Transversais , Diabetes Mellitus Tipo 2/genética , Metilação de DNA , Epigênese Genética , Epigenoma , Estudo de Associação Genômica Ampla/métodos , Masculino , Feminino
3.
Mol Psychiatry ; 27(9): 3875-3884, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35705636

RESUMO

Chronic heavy alcohol consumption is associated with increased mortality and morbidity and often leads to premature aging; however, the mechanisms of alcohol-associated cellular aging are not well understood. In this study, we used DNA methylation derived telomere length (DNAmTL) as a novel approach to investigate the role of alcohol use on the aging process. DNAmTL was estimated by 140 cytosine phosphate guanines (CpG) sites in 372 individuals with alcohol use disorder (AUD) and 243 healthy controls (HC) and assessed using various endophenotypes and clinical biomarkers. Validation in an independent sample of DNAmTL on alcohol consumption was performed (N = 4219). Exploratory genome-wide association studies (GWAS) on DNAmTL were also performed to identify genetic variants contributing to DNAmTL shortening. Top GWAS findings were analyzed using in-silico expression quantitative trait loci analyses and related to structural MRI hippocampus volumes of individuals with AUD. DNAmTL was 0.11-kilobases shorter per year in AUD compared to HC after adjustment for age, sex, race, and blood cell composition (p = 4.0 × 10-12). This association was partially attenuated but remained significant after additionally adjusting for BMI, and smoking status (0.06 kilobases shorter per year, p = 0.002). DNAmTL shortening was strongly associated with chronic heavy alcohol use (ps < 0.001), elevated gamma-glutamyl transferase (GGT), and aspartate aminotransferase (AST) (ps < 0.004). Comparison of DNAmTL with PCR-based methods of assessing TL revealed positive correlations (R = 0.3, p = 2.2 × 10-5), highlighting the accuracy of DNAmTL as a biomarker. The GWAS meta-analysis identified a single nucleotide polymorphism (SNP), rs4374022 and 18 imputed ones in Thymocyte Expressed, Positive Selection Associated 1(TESPA1), at the genome-wide level (p = 3.75 × 10-8). The allele C of rs4374022 was associated with DNAmTL shortening, lower hippocampus volume (p < 0.01), and decreased mRNA expression in hippocampus tissue (p = 0.04). Our study demonstrates DNAmTL-related aging acceleration in AUD and suggests a functional role for TESPA1 in regulating DNAmTL length, possibly via the immune system with subsequent biological effects on brain regions negatively affected by alcohol and implicated in aging.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Envelhecimento , Alcoolismo , Encurtamento do Telômero , Humanos , Consumo de Bebidas Alcoólicas/genética , Alcoolismo/genética , Metilação de DNA/genética , Estudo de Associação Genômica Ampla , Telômero/genética , Proteínas Adaptadoras de Transdução de Sinal/genética
4.
Elife ; 112022 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-35346416

RESUMO

Background: Epigenetic clocks have been associated with cancer risk in several observational studies. Nevertheless, it is unclear whether they play a causal role in cancer risk or if they act as a non-causal biomarker. Methods: We conducted a two-sample Mendelian randomization (MR) study to examine the genetically predicted effects of epigenetic age acceleration as measured by HannumAge (nine single-nucleotide polymorphisms (SNPs)), Horvath Intrinsic Age (24 SNPs), PhenoAge (11 SNPs), and GrimAge (4 SNPs) on multiple cancers (i.e. breast, prostate, colorectal, ovarian and lung cancer). We obtained genome-wide association data for biological ageing from a meta-analysis (N = 34,710), and for cancer from the UK Biobank (N cases = 2671-13,879; N controls = 173,493-372,016), FinnGen (N cases = 719-8401; N controls = 74,685-174,006) and several international cancer genetic consortia (N cases = 11,348-122,977; N controls = 15,861-105,974). Main analyses were performed using multiplicative random effects inverse variance weighted (IVW) MR. Individual study estimates were pooled using fixed effect meta-analysis. Sensitivity analyses included MR-Egger, weighted median, weighted mode and Causal Analysis using Summary Effect Estimates (CAUSE) methods, which are robust to some of the assumptions of the IVW approach. Results: Meta-analysed IVW MR findings suggested that higher GrimAge acceleration increased the risk of colorectal cancer (OR = 1.12 per year increase in GrimAge acceleration, 95% CI 1.04-1.20, p = 0.002). The direction of the genetically predicted effects was consistent across main and sensitivity MR analyses. Among subtypes, the genetically predicted effect of GrimAge acceleration was greater for colon cancer (IVW OR = 1.15, 95% CI 1.09-1.21, p = 0.006), than rectal cancer (IVW OR = 1.05, 95% CI 0.97-1.13, p = 0.24). Results were less consistent for associations between other epigenetic clocks and cancers. Conclusions: GrimAge acceleration may increase the risk of colorectal cancer. Findings for other clocks and cancers were inconsistent. Further work is required to investigate the potential mechanisms underlying the results. Funding: FMB was supported by a Wellcome Trust PhD studentship in Molecular, Genetic and Lifecourse Epidemiology (224982/Z/22/Z which is part of grant 218495/Z/19/Z). KKT was supported by a Cancer Research UK (C18281/A29019) programme grant (the Integrative Cancer Epidemiology Programme) and by the Hellenic Republic's Operational Programme 'Competitiveness, Entrepreneurship & Innovation' (OΠΣ 5047228). PH was supported by Cancer Research UK (C18281/A29019). RMM was supported by the NIHR Biomedical Research Centre at University Hospitals Bristol and Weston NHS Foundation Trust and the University of Bristol and by a Cancer Research UK (C18281/A29019) programme grant (the Integrative Cancer Epidemiology Programme). RMM is a National Institute for Health Research Senior Investigator (NIHR202411). The views expressed are those of the author(s) and not necessarily those of the NIHR or the Department of Health and Social Care. GDS and CLR were supported by the Medical Research Council (MC_UU_00011/1 and MC_UU_00011/5, respectively) and by a Cancer Research UK (C18281/A29019) programme grant (the Integrative Cancer Epidemiology Programme). REM was supported by an Alzheimer's Society project grant (AS-PG-19b-010) and NIH grant (U01 AG-18-018, PI: Steve Horvath). RCR is a de Pass Vice Chancellor's Research Fellow at the University of Bristol.


Have you noticed that some people seem to get older faster than others? Scientists have previously found that a chemical tag on DNA known as DNA methylation can be used to predict an individual's chronological age. However, age predicted using DNA methylation (also known as biological or epigenetic age) does not always perfectly correspond to chronological age. Indeed, some people's biological age is higher than their years, while other people's is lower. When an individual's biological age is higher than their chronological age, they are said to be experiencing 'epigenetic age acceleration'. This type of accelerated ageing, which can be measured with 'epigenetic clocks' based on DNA methylation, has been associated with several adverse health outcomes, including cancer. This means that epigenetic clocks may improve our ability to predict cancer risk and detect cancer early. However, it is still unclear whether accelerated biological ageing causes cancer, or whether it simply correlates with the disease. Morales-Berstein et al. wanted to investigate whether epigenetic age acceleration, as measured by epigenetic clocks, plays a role in the development of several cancers. To do so, they used an approach known as Mendelian randomization. Using genetic variants as natural experiments, they studied the effect of different measures of epigenetic age acceleration on cancer risk. Their work focused on five types of cancer: breast, colorectal, prostate, ovarian and lung cancer. They used genetic association data from people of European ancestry to determine whether genetic variants that are strongly associated with accelerated ageing are also strongly associated with cancer. The results showed that one of the DNA methylation markers used as an estimate of biological ageing could be directly related to the risk of developing colorectal cancer. This work provides new insights into the relationship between markers of biological ageing and cancer. Similar relationships should also be studied in other groups of people and for other cancer sites. The results suggest that reversing biological ageing by altering DNA methylation could prevent or delay the development of colorectal cancer.


Assuntos
Neoplasias Colorretais , Análise da Randomização Mendeliana , Neoplasias Colorretais/epidemiologia , Neoplasias Colorretais/genética , Epigênese Genética , Estudo de Associação Genômica Ampla/métodos , Humanos , Masculino , Polimorfismo de Nucleotídeo Único
5.
Clin Epigenetics ; 14(1): 1, 2022 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-34980250

RESUMO

BACKGROUND: Epigenetic clocks are biomarkers of ageing derived from DNA methylation levels at a subset of CpG sites. The difference between age predicted by these clocks and chronological age, termed "epigenetic age acceleration", has been shown to predict age-related disease and mortality. We aimed to assess the prognostic value of epigenetic age acceleration and a DNA methylation-based mortality risk score with all-cause mortality in a prospective clinical cohort of individuals with head and neck cancer: Head and Neck 5000. We investigated two markers of intrinsic epigenetic age acceleration (IEAAHorvath and IEAAHannum), one marker of extrinsic epigenetic age acceleration (EEAA), one optimised to predict physiological dysregulation (AgeAccelPheno), one optimised to predict lifespan (AgeAccelGrim) and a DNA methylation-based predictor of mortality (ZhangScore). Cox regression models were first used to estimate adjusted hazard ratios (HR) and 95% confidence intervals (CI) for associations of epigenetic age acceleration with all-cause mortality in people with oropharyngeal cancer (n = 408; 105 deaths). The added prognostic value of epigenetic markers compared to a clinical model including age, sex, TNM stage and HPV status was then evaluated. RESULTS: IEAAHannum and AgeAccelGrim were associated with mortality risk after adjustment for clinical and lifestyle factors (HRs per standard deviation [SD] increase in age acceleration = 1.30 [95% CI 1.07, 1.57; p = 0.007] and 1.40 [95% CI 1.06, 1.83; p = 0.016], respectively). There was weak evidence that the addition of AgeAccelGrim to the clinical model improved 3-year mortality prediction (area under the receiver operating characteristic curve: 0.80 vs. 0.77; p value for difference = 0.069). CONCLUSION: In the setting of a large, clinical cohort of individuals with head and neck cancer, our study demonstrates the potential of epigenetic markers of ageing to enhance survival prediction in people with oropharyngeal cancer, beyond established prognostic factors. Our findings have potential uses in both clinical and non-clinical contexts: to aid treatment planning and improve patient stratification.


Assuntos
Envelhecimento/genética , Biomarcadores , Metilação de DNA/genética , Epigenômica , Neoplasias Orofaríngeas/genética , Neoplasias Orofaríngeas/mortalidade , Taxa de Sobrevida , Adulto , Idoso , Idoso de 80 Anos ou mais , Estudos de Coortes , Feminino , Humanos , Estudos Longitudinais , Masculino , Pessoa de Meia-Idade , Prognóstico , Modelos de Riscos Proporcionais , Estudos Prospectivos , Fatores de Risco , Reino Unido
6.
Elife ; 112022 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-35023833

RESUMO

Protein biomarkers have been identified across many age-related morbidities. However, characterising epigenetic influences could further inform disease predictions. Here, we leverage epigenome-wide data to study links between the DNA methylation (DNAm) signatures of the circulating proteome and incident diseases. Using data from four cohorts, we trained and tested epigenetic scores (EpiScores) for 953 plasma proteins, identifying 109 scores that explained between 1% and 58% of the variance in protein levels after adjusting for known protein quantitative trait loci (pQTL) genetic effects. By projecting these EpiScores into an independent sample (Generation Scotland; n = 9537) and relating them to incident morbidities over a follow-up of 14 years, we uncovered 137 EpiScore-disease associations. These associations were largely independent of immune cell proportions, common lifestyle and health factors, and biological aging. Notably, we found that our diabetes-associated EpiScores highlighted previous top biomarker associations from proteome-wide assessments of diabetes. These EpiScores for protein levels can therefore be a valuable resource for disease prediction and risk stratification.


Although our genetic code does not change throughout our lives, our genes can be turned on and off as a result of epigenetics. Epigenetics can track how the environment and even certain behaviors add or remove small chemical markers to the DNA that makes up the genome. The type and location of these markers may affect whether genes are active or silent, this is, whether the protein coded for by that gene is being produced or not. One common epigenetic marker is known as DNA methylation. DNA methylation has been linked to the levels of a range of proteins in our cells and the risk people have of developing chronic diseases. Blood samples can be used to determine the epigenetic markers a person has on their genome and to study the abundance of many proteins. Gadd, Hillary, McCartney, Zaghlool et al. studied the relationships between DNA methylation and the abundance of 953 different proteins in blood samples from individuals in the German KORA cohort and the Scottish Lothian Birth Cohort 1936. They then used machine learning to analyze the relationship between epigenetic markers found in people's blood and the abundance of proteins, obtaining epigenetic scores or 'EpiScores' for each protein. They found 109 proteins for which DNA methylation patterns explained between at least 1% and up to 58% of the variation in protein levels. Integrating the 'EpiScores' with 14 years of medical records for more than 9000 individuals from the Generation Scotland study revealed 130 connections between EpiScores for proteins and a future diagnosis of common adverse health outcomes. These included diabetes, stroke, depression, various cancers, and inflammatory conditions such as rheumatoid arthritis and inflammatory bowel disease. Age-related chronic diseases are a growing issue worldwide and place pressure on healthcare systems. They also severely reduce quality of life for individuals over many years. This work shows how epigenetic scores based on protein levels in the blood could predict a person's risk of several of these diseases. In the case of type 2 diabetes, the EpiScore results replicated previous research linking protein levels in the blood to future diagnosis of diabetes. Protein EpiScores could therefore allow researchers to identify people with the highest risk of disease, making it possible to intervene early and prevent these people from developing chronic conditions as they age.


Assuntos
Doenças Cardiovasculares/diagnóstico , Metilação de DNA/genética , Diabetes Mellitus/diagnóstico , Epigenômica/métodos , Neoplasias/diagnóstico , Proteoma/genética , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Envelhecimento , Biomarcadores , Epigênese Genética , Feminino , Humanos , Estilo de Vida , Masculino , Pessoa de Meia-Idade , Fatores de Risco , Escócia , Adulto Jovem
7.
Genome Med ; 13(1): 74, 2021 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-33931109

RESUMO

BACKGROUND: DNA methylation (DNAm) is associated with gene regulation and estimated glomerular filtration rate (eGFR), a measure of kidney function. Decreased eGFR is more common among US Hispanics and African Americans. The causes for this are poorly understood. We aimed to identify trans-ethnic and ethnic-specific differentially methylated positions (DMPs) associated with eGFR using an agnostic, genome-wide approach. METHODS: The study included up to 5428 participants from multi-ethnic studies for discovery and 8109 participants for replication. We tested the associations between whole blood DNAm and eGFR using beta values from Illumina 450K or EPIC arrays. Ethnicity-stratified analyses were performed using linear mixed models adjusting for age, sex, smoking, and study-specific and technical variables. Summary results were meta-analyzed within and across ethnicities. Findings were assessed using integrative epigenomics methods and pathway analyses. RESULTS: We identified 93 DMPs associated with eGFR at an FDR of 0.05 and replicated 13 and 1 DMPs across independent samples in trans-ethnic and African American meta-analyses, respectively. The study also validated 6 previously published DMPs. Identified DMPs showed significant overlap enrichment with DNase I hypersensitive sites in kidney tissue, sites associated with the expression of proximal genes, and transcription factor motifs and pathways associated with kidney tissue and kidney development. CONCLUSIONS: We uncovered trans-ethnic and ethnic-specific DMPs associated with eGFR, including DMPs enriched in regulatory elements in kidney tissue and pathways related to kidney development. These findings shed light on epigenetic mechanisms associated with kidney function, bridging the gap between population-specific eGFR-associated DNAm and tissue-specific regulatory context.


Assuntos
Epigênese Genética , Epigenômica , Estudo de Associação Genômica Ampla , Rim/metabolismo , Locos de Características Quantitativas , Característica Quantitativa Herdável , Grupos Raciais/genética , Ilhas de CpG , Metilação de DNA , Epigenômica/métodos , Regulação da Expressão Gênica , Variação Genética , Genética Populacional , Taxa de Filtração Glomerular , Humanos , Testes de Função Renal , Fenótipo
8.
Brain Commun ; 3(2): fcab082, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34041477

RESUMO

Modifiable lifestyle factors influence the risk of developing many neurological diseases. These factors have been extensively linked with blood-based genome-wide DNA methylation, but it is unclear if the signatures from blood translate to the target tissue of interest-the brain. To investigate this, we apply blood-derived epigenetic predictors of four lifestyle traits to genome-wide DNA methylation from five post-mortem brain regions and the last blood sample prior to death in 14 individuals in the Lothian Birth Cohort 1936. Using these matched samples, we found that correlations between blood and brain DNA methylation scores for smoking, high-density lipoprotein cholesterol, alcohol and body mass index were highly variable across brain regions. Smoking scores in the dorsolateral prefrontal cortex had the strongest correlations with smoking scores in blood (r = 0.5, n = 14, P = 0.07) and smoking behaviour (r = 0.56, n = 9, P = 0.12). This was also the brain region which exhibited the largest correlations for DNA methylation at site cg05575921 - the single strongest correlate of smoking in blood-in relation to blood (r = 0.61, n = 14, P = 0.02) and smoking behaviour (r = -0.65, n = 9, P = 0.06). This suggested a particular vulnerability to smoking-related differential methylation in this region. Our work contributes to understanding how lifestyle factors affect the brain and suggest that lifestyle-related DNA methylation is likely to be both brain region dependent and in many cases poorly proxied for by blood. Though these pilot data provide a rarely-available opportunity for the comparison of methylation patterns across multiple brain regions and the blood, due to the limited sample size available our results must be considered as preliminary and should therefore be used as a basis for further investigation.

9.
J Gerontol A Biol Sci Med Sci ; 76(12): 2284-2292, 2021 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-33595649

RESUMO

BACKGROUND: Studies evaluating the relationship between chronic inflammation and cognitive functioning have produced heterogeneous results. A potential reason for this is the variability of inflammatory mediators which could lead to misclassifications of individuals' persisting levels of inflammation. DNA methylation (DNAm) has shown utility in indexing environmental exposures and could be leveraged to provide proxy signatures of chronic inflammation. METHOD: We conducted an elastic net regression of interleukin-6 (IL-6) in a cohort of 875 older adults (Lothian Birth Cohort 1936; mean age: 70 years) to develop a DNAm-based predictor. The predictor was tested in an independent cohort (Generation Scotland; N = 7028 [417 with measured IL-6], mean age: 51 years). RESULTS: A weighted score from 35 CpG sites optimally predicted IL-6 in the independent test set (Generation Scotland; R2 = 4.4%, p = 2.1 × 10-5). In the independent test cohort, both measured IL-6 and the DNAm proxy increased with age (serum IL-6: n = 417, ß = 0.02, SE = 0.004, p = 1.3 × 10-7; DNAm IL-6 score: N = 7028, ß = 0.02, SE = 0.0009, p < 2 × 10-16). Serum IL-6 did not associate with cognitive ability (n = 417, ß = -0.06, SE = 0.05, p = .19); however, an inverse association was identified between the DNAm score and cognitive functioning (N = 7028, ß = -0.16, SE = 0.02, pFDR < 2 × 10-16). CONCLUSIONS: These results suggest methylation-based predictors can be used as proxies for inflammatory markers, potentially allowing for further insight into the relationship between inflammation and pertinent health outcomes.


Assuntos
Cognição , Metilação de DNA , Inflamação , Interleucina-6 , Idoso , Estudos de Coortes , Epigênese Genética , Humanos , Inflamação/genética , Interleucina-6/genética , Pessoa de Meia-Idade
10.
Clin Epigenetics ; 12(1): 115, 2020 07 31.
Artigo em Inglês | MEDLINE | ID: mdl-32736664

RESUMO

BACKGROUND: Individuals of the same chronological age display different rates of biological ageing. A number of measures of biological age have been proposed which harness age-related changes in DNA methylation profiles. These measures include five 'epigenetic clocks' which provide an index of how much an individual's biological age differs from their chronological age at the time of measurement. The five clocks encompass methylation-based predictors of chronological age (HorvathAge, HannumAge), all-cause mortality (DNAm PhenoAge, DNAm GrimAge) and telomere length (DNAm Telomere Length). A sixth epigenetic measure of ageing differs from these clocks in that it acts as a speedometer providing a single time-point measurement of the pace of an individual's biological ageing. This measure of ageing is termed DunedinPoAm. In this study, we test the association between these six epigenetic measures of ageing and the prevalence and incidence of the leading causes of disease burden and mortality in high-income countries (n ≤ 9537, Generation Scotland: Scottish Family Health Study). RESULTS: DNAm GrimAge predicted incidence of clinically diagnosed chronic obstructive pulmonary disease (COPD), type 2 diabetes and ischemic heart disease after 13 years of follow-up (hazard ratios = 2.22, 1.52 and 1.41, respectively). DunedinPoAm predicted the incidence of COPD and lung cancer (hazard ratios = 2.02 and 1.45, respectively). DNAm PhenoAge predicted incidence of type 2 diabetes (hazard ratio = 1.54). DNAm Telomere Length associated with the incidence of ischemic heart disease (hazard ratio = 0.80). DNAm GrimAge associated with all-cause mortality, the prevalence of COPD and spirometry measures at the study baseline. These associations were present after adjusting for possible confounding risk factors including alcohol consumption, body mass index, deprivation, education and tobacco smoking and surpassed stringent Bonferroni-corrected significance thresholds. CONCLUSIONS: Our data suggest that epigenetic measures of ageing may have utility in clinical settings to complement gold-standard methods for disease assessment and management.


Assuntos
Envelhecimento/genética , Efeitos Psicossociais da Doença , Diabetes Mellitus Tipo 2/mortalidade , Epigênese Genética/genética , Epigenômica/métodos , Isquemia Miocárdica/mortalidade , Doença Pulmonar Obstrutiva Crônica/mortalidade , Causas de Morte , Feminino , Humanos , Incidência , Masculino , Pessoa de Meia-Idade , Valor Preditivo dos Testes , Prevalência , Escócia/epidemiologia
11.
Nat Commun ; 11(1): 2865, 2020 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-32513961

RESUMO

Linking epigenetic marks to clinical outcomes improves insight into molecular processes, disease prediction, and therapeutic target identification. Here, a statistical approach is presented to infer the epigenetic architecture of complex disease, determine the variation captured by epigenetic effects, and estimate phenotype-epigenetic probe associations jointly. Implicitly adjusting for probe correlations, data structure (cell-count or relatedness), and single-nucleotide polymorphism (SNP) marker effects, improves association estimates and in 9,448 individuals, 75.7% (95% CI 71.70-79.3) of body mass index (BMI) variation and 45.6% (95% CI 37.3-51.9) of cigarette consumption variation was captured by whole blood methylation array data. Pathway-linked probes of blood cholesterol, lipid transport and sterol metabolism for BMI, and xenobiotic stimuli response for smoking, showed >1.5 times larger associations with >95% posterior inclusion probability. Prediction accuracy improved by 28.7% for BMI and 10.2% for smoking over a LASSO model, with age-, and tissue-specificity, implying associations are a phenotypic consequence rather than causal.


Assuntos
Epigênese Genética , Característica Quantitativa Herdável , Adulto , Algoritmos , Teorema de Bayes , Biomarcadores/análise , Índice de Massa Corporal , Simulação por Computador , Metilação de DNA/genética , Humanos , Anotação de Sequência Molecular , Especificidade de Órgãos/genética , Reprodutibilidade dos Testes
12.
Clin Epigenetics ; 12(1): 58, 2020 04 22.
Artigo em Inglês | MEDLINE | ID: mdl-32321578

RESUMO

BACKGROUND: DNA methylation (DNAm) variation is an established predictor for several traits. In the context of oropharyngeal cancer (OPC), where 5-year survival is ~ 65%, DNA methylation may act as a prognostic biomarker. We examined the accuracy of DNA methylation biomarkers of 4 complex exposure traits (alcohol consumption, body mass index [BMI], educational attainment and smoking status) in predicting all-cause mortality in people with OPC. RESULTS: DNAm predictors of alcohol consumption, BMI, educational attainment and smoking status were applied to 364 individuals with OPC in the Head and Neck 5000 cohort (HN5000; 19.6% of total OPC cases in the study), followed up for median 3.9 years; inter-quartile range (IQR) 3.3 to 5.2 years (time-to-event-death or censor). The proportion of phenotypic variance explained in each trait was as follows: 16.5% for alcohol consumption, 22.7% for BMI, 0.4% for educational attainment and 51.1% for smoking. We then assessed the relationship between each DNAm predictor and all-cause mortality using Cox proportional-hazard regression analysis. DNAm prediction of smoking was most consistently associated with mortality risk (hazard ratio [HR], 1.38 per standard deviation (SD) increase in smoking DNAm score; 95% confidence interval [CI] 1.04 to 1.83; P 0.025, in a model adjusted for demographic, lifestyle, health and biological variables). Finally, we examined the accuracy of each DNAm predictor of mortality. DNAm predictors explained similar levels of variance in mortality to self-reported phenotypes. Receiver operator characteristic (ROC) curves for the DNAm predictors showed a moderate discrimination of alcohol consumption (area under the curve [AUC] 0.63), BMI (AUC 0.61) and smoking (AUC 0.70) when predicting mortality. The DNAm predictor for education showed poor discrimination (AUC 0.57). Z tests comparing AUCs between self-reported phenotype ROC curves and DNAm score ROC curves did not show evidence for difference between the two (alcohol consumption P 0.41, BMI P 0.62, educational attainment P 0.49, smoking P 0.19). CONCLUSIONS: In the context of a clinical cohort of individuals with OPC, DNAm predictors for smoking, alcohol consumption, educational attainment and BMI exhibit similar predictive values for all-cause mortality compared to self-reported data. These findings may have translational utility in prognostic model development, particularly where phenotypic data are not available.


Assuntos
Consumo de Bebidas Alcoólicas/epidemiologia , Biomarcadores Tumorais/genética , Metilação de DNA , Neoplasias Orofaríngeas/mortalidade , Fumar Tabaco/epidemiologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Consumo de Bebidas Alcoólicas/efeitos adversos , Consumo de Bebidas Alcoólicas/genética , Índice de Massa Corporal , Estudos de Coortes , Escolaridade , Epigênese Genética , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Neoplasias Orofaríngeas/etiologia , Neoplasias Orofaríngeas/genética , Prognóstico , Curva ROC , Medição de Risco , Fumar Tabaco/efeitos adversos , Fumar Tabaco/genética
13.
Clin Epigenetics ; 12(1): 49, 2020 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-32216821

RESUMO

BACKGROUND: DNA methylation outlier burden has been suggested as a potential marker of biological age. An outlier is typically defined as DNA methylation levels at any one CpG site that are three times beyond the inter-quartile range from the 25th or 75th percentiles compared to the rest of the population. DNA methylation outlier burden (the number of such outlier sites per individual) increases exponentially with age. However, these findings have been observed in small samples. RESULTS: Here, we showed an association between age and log10-transformed DNA methylation outlier burden in a large cross-sectional cohort, the Generation Scotland Family Health Study (N = 7010, ß = 0.0091, p < 2 × 10-16), and in two longitudinal cohort studies, the Lothian Birth Cohorts of 1921 (N = 430, ß = 0.033, p = 7.9 × 10-4) and 1936 (N = 898, ß = 0.0079, p = 0.074). Significant confounders of both cross-sectional and longitudinal associations between outlier burden and age included white blood cell proportions, body mass index (BMI), smoking, and batch effects. In Generation Scotland, the increase in epigenetic outlier burden with age was not purely an artefact of an increase in DNA methylation level variability with age (epigenetic drift). Log10-transformed DNA methylation outlier burden in Generation Scotland was not related to self-reported, or family history of, age-related diseases, and it was not heritable (SNP-based heritability of 4.4%, p = 0.18). Finally, DNA methylation outlier burden was not significantly related to survival in either of the Lothian Birth Cohorts individually or in the meta-analysis after correction for multiple testing (HRmeta = 1.12; 95% CImeta = [1.02; 1.21]; pmeta = 0.021). CONCLUSIONS: These findings suggest that, while it does not associate with ageing-related health outcomes, DNA methylation outlier burden does track chronological ageing and may also relate to survival. DNA methylation outlier burden may thus be useful as a marker of biological ageing.


Assuntos
Envelhecimento/genética , Metilação de DNA , Adulto , Fatores Etários , Fatores de Confusão Epidemiológicos , Ilhas de CpG , Estudos Transversais , Epigênese Genética , Feminino , Humanos , Estudos Longitudinais , Masculino , Pessoa de Meia-Idade , Fatores de Risco , Escócia
14.
Curr Biol ; 29(16): R786-R787, 2019 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-31430471

RESUMO

Age-related clonal haemopoiesis (ARCH) in healthy individuals was initially observed through an increased skewing in X-chromosome inactivation [1]. More recently, several groups reported that ARCH is driven by somatic mutations [2], with the most prevalent ARCH mutations being in the DNMT3A and TET2 genes, previously described as drivers of myeloid malignancies. ARCH is associated with an increased risk for haematological cancers [2]. ARCH also confers an increased risk for non-haematological diseases, such as cardiovascular disease, atherosclerosis, and chronic ischemic heart failure, for which age is a main risk factor [3,4]. Whether ARCH is linked to accelerated ageing has remained unexplored. The most accurate and commonly used tools to measure age acceleration are epigenetic clocks: they are based on age-related methylation differences at specific CpG sites [5]. Deviations from chronological age towards an increased epigenetic age have been associated with increased risk of earlier mortality and age-related morbidities [5,6]. Here we present evidence of accelerated epigenetic age in individuals with ARCH.


Assuntos
Envelhecimento , Epigênese Genética/fisiologia , Hematopoese/fisiologia , Idoso , Idoso de 80 Anos ou mais , Feminino , Hematopoese/genética , Humanos , Estudos Longitudinais , Masculino , Fatores de Risco , Escócia
15.
Genome Med ; 12(1): 1, 2019 12 31.
Artigo em Inglês | MEDLINE | ID: mdl-31892350

RESUMO

BACKGROUND: Advanced age is associated with cognitive and physical decline and is a major risk factor for a multitude of disorders. There is also a gap in life expectancy between males and females. DNA methylation differences have been shown to be associated with both age and sex. Here, we investigate age-by-sex differences in blood-based DNA methylation in an unrelated cohort of 2586 individuals between the ages of 18 and 87 years, with replication in a further 4450 individuals between the ages of 18 and 93 years. METHODS: Linear regression models were applied, with stringent genome-wide significance thresholds (p < 3.6 × 10-8) used in both the discovery and replication data. A second, highly conservative mixed linear model method that better controls the false-positive rate was also applied, using the same genome-wide significance thresholds. RESULTS: Using the linear regression method, 52 autosomal and 597 X-linked CpG sites, mapping to 251 unique genes, replicated with concordant effect size directions in the age-by-sex interaction analysis. The site with the greatest difference mapped to GAGE10, an X-linked gene. Here, DNA methylation levels remained stable across the male adult age range (DNA methylation by age r = 0.02) but decreased across female adult age range (DNA methylation by age r = - 0.61). One site (cg23722529) with a significant age-by-sex interaction also had a quantitative trait locus (rs17321482) that is a genome-wide significant variant for prostate cancer. The mixed linear model method identified 11 CpG sites associated with the age-by-sex interaction. CONCLUSION: The majority of differences in age-associated DNA methylation trajectories between sexes are present on the X chromosome. Several of these differences occur within genes that have been implicated in sexually dimorphic traits.


Assuntos
Envelhecimento/genética , Metilação de DNA , Estudo de Associação Genômica Ampla , Adulto , Idoso , Cromossomos Humanos X/genética , Ilhas de CpG , Feminino , Regulação da Expressão Gênica , Humanos , Modelos Lineares , Masculino , Pessoa de Meia-Idade , Locos de Características Quantitativas , Caracteres Sexuais
16.
Clin Epigenetics ; 10(1): 159, 2018 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-30572949

RESUMO

BACKGROUND: Epigenetic age acceleration (an older methylation age compared to chronological age) correlates strongly with various age-related morbidities and mortality. Chronic systemic inflammation is thought to be a hallmark of ageing, but the relationship between an increased epigenetic age and this likely key phenotype of ageing has not yet been extensively investigated. METHODS: We modelled the trajectories of the inflammatory biomarkers C-reactive protein (CRP; measured using both a high- and low-sensitivity assay) and interleukin-6 (IL-6) over the eighth decade in the Lothian Birth Cohort 1936. Using linear mixed models, we investigated the association between CRP and immune cell profiles imputed from the methylation data and examined the cross-sectional and longitudinal association between the inflammatory biomarkers and two measures of epigenetic age acceleration, derived from the Horvath and Hannum epigenetic clocks. RESULTS: We found that low-sensitivity CRP declined, high-sensitivity CRP did not change, and IL-6 increased over time within the cohort. CRP levels inversely associated with CD8+T cells and CD4+T cells and positively associated with senescent CD8+T cells, plasmablasts and granulocytes. Cross-sectionally, the Hannum, but not the Horvath, measure of age acceleration was positively associated with each of the inflammatory biomarkers, including a restricted measure of CRP (≤ 10 mg/L) likely reflecting levels relevant to chronic inflammation. CONCLUSIONS: We found a divergent relationship between inflammation and immune system parameters in older age. We additionally report the Hannum measure of epigenetic age acceleration associated with an elevated inflammatory profile cross-sectionally, but not longitudinally.


Assuntos
Envelhecimento/genética , Proteína C-Reativa/metabolismo , Metilação de DNA , Marcadores Genéticos , Inflamação/genética , Interleucina-6/metabolismo , Idoso , Idoso de 80 Anos ou mais , Envelhecimento/imunologia , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Estudos Transversais , Epigênese Genética , Feminino , Granulócitos/imunologia , Humanos , Modelos Lineares , Estudos Longitudinais , Contagem de Linfócitos , Masculino , Plasmócitos/imunologia
17.
EBioMedicine ; 37: 214-220, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30389506

RESUMO

BACKGROUND: Multiple studies have made robust associations between differential DNA methylation and exposure to cigarette smoke. But whether a DNA methylation phenotype is established immediately upon exposure, or only after prolonged exposure is less well-established. Here, we assess DNA methylation patterns from peripheral blood samples in current smokers in response to dose and duration of exposure, along with the effects of smoking cessation on DNA methylation in former smokers. METHODS: Dimensionality reduction was applied to DNA methylation data at 90 previously identified smoking-associated CpG sites for over 4900 individuals in the Generation Scotland cohort. K-means clustering was performed to identify clusters associated with current and never smoker status based on these methylation patterns. Cluster assignments were assessed with respect to duration of exposure in current smokers (years as a smoker), time since smoking cessation in former smokers (years), and dose (cigarettes per day). FINDINGS: Two clusters were specified, corresponding to never smokers (97·5% of whom were assigned to Cluster 1) and current smokers (81·1% of whom were assigned to Cluster 2). The exposure time point from which >50% of current smokers were assigned to the smoker-enriched cluster varied between 5 and 9 years in heavier smokers and between 15 and 19 years in lighter smokers. Low-dose former smokers were more likely to be assigned to the never smoker-enriched cluster in the first year following cessation. In contrast, a period of at least two years was required before the majority of former high-dose smokers were assigned to the never smoker-enriched cluster. INTERPRETATION: Our findings suggest that smoking-associated DNA methylation changes are a result of prolonged exposure to cigarette smoke, and can be reversed following cessation. The length of time in which these signatures are established and recovered is dose dependent. Should DNA methylation-based signatures of smoking status be predictive of smoking-related health outcomes, our findings may provide an additional criterion on which to stratify risk.


Assuntos
Ilhas de CpG , Metilação de DNA , Epigênese Genética , Abandono do Hábito de Fumar , Fumar/sangue , Adulto , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Fumar/genética
18.
Alzheimers Dement (Amst) ; 10: 429-437, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30167451

RESUMO

INTRODUCTION: The "epigenetic clock" is a DNA methylation-based estimate of biological age and is correlated with chronological age-the greatest risk factor for Alzheimer's disease (AD). Genetic and environmental risk factors exist for AD, several of which are potentially modifiable. In this study, we assess the relationship between the epigenetic clock and AD risk factors. METHODS: Multilevel models were used to assess the relationship between age acceleration (the residual of biological age regressed onto chronological age) and AD risk factors relating to cognitive reserve, lifestyle, disease, and genetics in the Generation Scotland study (n = 5100). RESULTS: We report significant associations between age acceleration and body mass index, total cholesterol to high-density lipoprotein cholesterol ratios, socioeconomic status, high blood pressure, and smoking behavior (Bonferroni-adjusted P < .05). DISCUSSION: Associations are present between environmental risk factors for AD and age acceleration. Measures to modify such risk factors might improve the risk profile for AD and the rate of biological ageing. Future longitudinal analyses are therefore warranted.

19.
Genome Biol ; 19(1): 136, 2018 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-30257690

RESUMO

BACKGROUND: Genome-wide DNA methylation (DNAm) profiling has allowed for the development of molecular predictors for a multitude of traits and diseases. Such predictors may be more accurate than the self-reported phenotypes and could have clinical applications. RESULTS: Here, penalized regression models are used to develop DNAm predictors for ten modifiable health and lifestyle factors in a cohort of 5087 individuals. Using an independent test cohort comprising 895 individuals, the proportion of phenotypic variance explained in each trait is examined for DNAm-based and genetic predictors. Receiver operator characteristic curves are generated to investigate the predictive performance of DNAm-based predictors, using dichotomized phenotypes. The relationship between DNAm scores and all-cause mortality (n = 212 events) is assessed via Cox proportional hazards models. DNAm predictors for smoking, alcohol, education, and waist-to-hip ratio are shown to predict mortality in multivariate models. The predictors show moderate discrimination of obesity, alcohol consumption, and HDL cholesterol. There is excellent discrimination of current smoking status, poorer discrimination of college-educated individuals and those with high total cholesterol, LDL with remnant cholesterol, and total:HDL cholesterol ratios. CONCLUSIONS: DNAm predictors correlate with lifestyle factors that are associated with health and mortality. They may supplement DNAm-based predictors of age to identify the lifestyle profiles of individuals and predict disease risk.


Assuntos
Metilação de DNA , Epigênese Genética , Mortalidade , Herança Multifatorial , Adulto , Idoso , Estudos de Coortes , Ilhas de CpG , Feminino , Humanos , Estilo de Vida , Modelos Lineares , Masculino , Pessoa de Meia-Idade , Fenótipo , Modelos de Riscos Proporcionais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA