Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Plant Genome ; 16(4): e20380, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37602515

RESUMO

White mold (WM), caused by the ubiquitous fungus Sclerotinia sclerotiorum, is a devastating disease that limits production and quality of dry bean globally. In the present study, classic linkage mapping combined with QTL-seq were employed in two recombinant inbred line (RIL) populations, "Montrose"/I9365-25 (M25) and "Raven"/I9365-31 (R31), with the initial goal of fine-mapping QTL WM5.4 and WM7.5 that condition WM resistance. The RILs were phenotyped for WM reactions under greenhouse (straw test) and field environments. The general region of WM5.4 and WM7.5 were reconfirmed with both mapping strategies within each population. Combining the results from both mapping strategies, WM5.4 was delimited to a 22.60-36.25 Mb interval in the heterochromatic regions on Pv05, while WM7.5 was narrowed to a 0.83 Mb (3.99-4.82 Mb) region on the Pv07 chromosome. Furthermore, additional QTL WM2.2a (3.81-7.24 Mb), WM2.2b (11.18-17.37 Mb, heterochromatic region), and WM2.2c (23.33-25.94 Mb) were mapped to a narrowed genomic interval on Pv02 and WM4.2 in a 0.89 Mb physical interval at the distal end of Pv04 chromosome. Gene models encoding gibberellin 2-oxidase proteins regulating plant architecture are likely candidate genes associated with WM2.2a resistance. Nine gene models encoding a disease resistance protein (quinone reductase family protein and ATWRKY69) found within the WM5.4 QTL interval are putative candidate genes. Clusters of 13 and 5 copies of gene models encoding cysteine-rich receptor-like kinase and receptor-like protein kinase-related family proteins, respectively, are potential candidate genes associated with WM7.5 resistance and most likely trigger physiological resistance to WM. Acquired knowledge of the narrowed major QTL intervals, flanking markers, and candidate genes provides promising opportunities to develop functional molecular markers to implement marker-assisted selection for WM resistant dry bean cultivars.


Assuntos
Cromossomos de Plantas , Locos de Características Quantitativas , Mapeamento Cromossômico/métodos , Fenótipo , Resistência à Doença/genética
2.
PLoS One ; 14(2): e0212140, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30730982

RESUMO

Common bean (Phaseolus vulgaris L.) is an important high protein crop grown worldwide. North Dakota and Minnesota are the largest producers of common beans in the USA, but crop production is threatened by soybean cyst nematode (SCN; Heterodera glycines Ichinohe) because most current cultivars are susceptible. Greenhouse screening data using SCN HG type 0 from 317 plant introductions (PI's) from the USDA core collection was used to conduct a genome wide association study (GWAS). These lines were divided into two subpopulations based on principal component analysis (Middle American vs. Andean). Phenotypic results based on the female index showed that accessions could be classified as highly resistant (21% and 27%), moderately resistant (51% and 48%), moderately susceptible (27% and 22%) and highly susceptible (1% and 3%) for Middle American and Andean gene pools, respectively. Mixed models with two principal components (PCs) and kinship matrix for Middle American genotypes and Andean genotypes were used in the GWAS analysis using 3,985 and 4,811 single nucleotide polymorphic (SNP) markers, respectively which were evenly distributed across all 11 chromosomes. Significant peaks on Pv07, and Pv11 in Middle American and on Pv07, Pv08, Pv09 and Pv11 in Andean group were found to be associated with SCN resistance. Homologs of soybean rhg1, a locus which confers resistance to SCN in soybean, were identified on chromosomes Pv01 and Pv08 in the Middle American and Andean gene pools, respectively. These genomic regions may be the key to develop SCN-resistant common bean cultivars.


Assuntos
Resistência à Doença/genética , Genoma de Planta/genética , Estudo de Associação Genômica Ampla , Phaseolus/genética , Phaseolus/imunologia , Doenças das Plantas/imunologia , Tylenchoidea/fisiologia , Animais , Fenótipo , Polimorfismo de Nucleotídeo Único
3.
PLoS One ; 9(9): e107469, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25225893

RESUMO

Iron deficiency chlorosis (IDC) is a yield limiting problem in soybean (Glycine max (L.) Merr) production regions with calcareous soils. Genome-wide association study (GWAS) was performed using a high density SNP map to discover significant markers, QTL and candidate genes associated with IDC trait variation. A stepwise regression model included eight markers after considering LD between markers, and identified seven major effect QTL on seven chromosomes. Twelve candidate genes known to be associated with iron metabolism mapped near these QTL supporting the polygenic nature of IDC. A non-synonymous substitution with the highest significance in a major QTL region suggests soybean orthologs of FRE1 on Gm03 is a major gene responsible for trait variation. NAS3, a gene that encodes the enzyme nicotianamine synthase which synthesizes the iron chelator nicotianamine also maps to the same QTL region. Disease resistant genes also map to the major QTL, supporting the hypothesis that pathogens compete with the plant for Fe and increase iron deficiency. The markers and the allelic combinations identified here can be further used for marker assisted selection.


Assuntos
Estudo de Associação Genômica Ampla , Glycine max/genética , Glycine max/metabolismo , Deficiências de Ferro , Doenças das Plantas/genética , Alelos , Mapeamento Cromossômico , Resistência à Doença/genética , Epistasia Genética , Genes de Plantas , Estudos de Associação Genética , Predisposição Genética para Doença , Genótipo , Desequilíbrio de Ligação , Anotação de Sequência Molecular , Fenótipo , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas
4.
Nat Genet ; 46(7): 707-13, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24908249

RESUMO

Common bean (Phaseolus vulgaris L.) is the most important grain legume for human consumption and has a role in sustainable agriculture owing to its ability to fix atmospheric nitrogen. We assembled 473 Mb of the 587-Mb genome and genetically anchored 98% of this sequence in 11 chromosome-scale pseudomolecules. We compared the genome for the common bean against the soybean genome to find changes in soybean resulting from polyploidy. Using resequencing of 60 wild individuals and 100 landraces from the genetically differentiated Mesoamerican and Andean gene pools, we confirmed 2 independent domestications from genetic pools that diverged before human colonization. Less than 10% of the 74 Mb of sequence putatively involved in domestication was shared by the two domestication events. We identified a set of genes linked with increased leaf and seed size and combined these results with quantitative trait locus data from Mesoamerican cultivars. Genes affected by domestication may be useful for genomics-enabled crop improvement.


Assuntos
Produtos Agrícolas/genética , Genes de Plantas , Genoma de Planta , Phaseolus/genética , Locos de Características Quantitativas , América Central , Mapeamento Cromossômico , Cromossomos de Plantas/genética , Produtos Agrícolas/crescimento & desenvolvimento , Humanos , Dados de Sequência Molecular , Phaseolus/crescimento & desenvolvimento , Folhas de Planta/química , Folhas de Planta/genética , Ploidias , Polimorfismo de Nucleotídeo Único/genética , Padrões de Referência , Sementes/química , Sementes/genética , Análise de Sequência de DNA , América do Sul
5.
BMC Genomics ; 11: 184, 2010 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-20298570

RESUMO

BACKGROUND: Understanding syntentic relationship between two species is critical to assessing the potential for comparative genomic analysis. Common bean (Phaseolus vulgaris L.) and soybean (Glycine max L.), the two most important members of the Phaseoleae legumes, appear to have a diploid and polyploidy recent past, respectively. Determining the syntentic relationship between these two species will allow researchers to leverage not only genomic resources but also genetic data for important agronomic traits to improve both of these species. RESULTS: Genetically-positioned transcript loci of common bean were mapped relative to the recent soybean 1.01 pseudochromosome assembly. In nearly every case, each common bean locus mapped to two loci in soybean, a result consistent with the duplicate polyploidy history of soybean. Blocks of synteny averaging 32 cM in common bean and 4.9 Mb in soybean were observed for all 11 common bean linkage groups, and these blocks mapped to all 20 soybean pseudochromosomes. The median physical-to-genetic distance ratio in common bean (based on soybean physical distances) was approximately 120 kb/cM. approximately 15,000 common bean sequences (primarily EST contigs and EST singletons) were electronically positioned onto the common bean map using the shared syntentic blocks as references points. CONCLUSION: The collected evidence from this mapping strongly supports the duplicate history of soybean. It further provides evidence that the soybean genome was fractionated and reassembled at some point following the duplication event. These well mapped syntentic relationships between common bean and soybean will enable researchers to target specific genomic regions to discover genes or loci that affect phenotypic expression in both species.


Assuntos
Mapeamento Cromossômico , Genoma de Planta , Glycine max/genética , Phaseolus/genética , Sintenia , Cromossomos de Plantas , Hibridização Genômica Comparativa , DNA de Plantas/genética , Evolução Molecular , Etiquetas de Sequências Expressas , Ligação Genética , Filogenia , Análise de Sequência de DNA
6.
Theor Appl Genet ; 116(6): 777-87, 2008 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-18292984

RESUMO

Association mapping is an alternative to mapping in a biparental population. A key to successful association mapping is to avoid spurious associations by controlling for population structure. Confirming the marker/trait association in an independent population is necessary for the implementation of the marker in other genetic studies. Two independent soybean populations consisting of advanced breeding lines representing the diversity within maturity groups 00, 0, and I were screened in multi-site, replicated field trials to discover molecular markers associated with iron deficiency chlorosis (IDC), a major yield-limiting factor in soybean. Lines with extreme phenotypes were initially screened to identify simple sequence repeat (SSR) markers putatively associated with the IDC. Marker data collected from all lines were used to control for population structure and kinship relationships. Single factor analysis of variance (SFA) and mixed linear model (MLM) analyses were used to discover marker/trait associations. The MLM analyses, which include population structure, kinship or both factors, reduced the number of markers significantly associated with IDC by 50% compared with SFA. With the MLM approach, three markers were found to be associated with IDC in the first population. Two of these markers, Satt114 and Satt239, were also found to be associated with IDC in the second confirmation population. For both populations, those lines with the tolerance allele at both these two marker loci had significantly lower IDC scores than lines with one or no tolerant alleles.


Assuntos
Cruzamento , Mapeamento Cromossômico , Glycine max/genética , Glycine max/metabolismo , Deficiências de Ferro , Repetições Minissatélites/genética , Doenças das Plantas/genética , Locos de Características Quantitativas , Biomarcadores , Cromossomos de Plantas , Modelos Genéticos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA