RESUMO
BACKGROUND: Infectious diseases of farmed and wild animals pose a recurrent threat to food security and human health. The macrophage, a key component of the innate immune system, is the first line of defence against many infectious agents and plays a major role in shaping the adaptive immune response. However, this phagocyte is a target and host for many pathogens. Understanding the molecular basis of interactions between macrophages and pathogens is therefore crucial for the development of effective strategies to combat important infectious diseases. RESULTS: We explored how porcine pluripotent stem cells (PSCs) can provide a limitless in vitro supply of genetically and experimentally tractable macrophages. Porcine PSC-derived macrophages (PSCdMs) exhibited molecular and functional characteristics of ex vivo primary macrophages and were productively infected by pig pathogens, including porcine reproductive and respiratory syndrome virus (PRRSV) and African swine fever virus (ASFV), two of the most economically important and devastating viruses in pig farming. Moreover, porcine PSCdMs were readily amenable to genetic modification by CRISPR/Cas9 gene editing applied either in parental stem cells or directly in the macrophages by lentiviral vector transduction. CONCLUSIONS: We show that porcine PSCdMs exhibit key macrophage characteristics, including infection by a range of commercially relevant pig pathogens. In addition, genetic engineering of PSCs and PSCdMs affords new opportunities for functional analysis of macrophage biology in an important livestock species. PSCs and differentiated derivatives should therefore represent a useful and ethical experimental platform to investigate the genetic and molecular basis of host-pathogen interactions in pigs, and also have wider applications in livestock.
Assuntos
Vírus da Febre Suína Africana , Doenças Transmissíveis , Vírus da Febre Suína Africana/genética , Animais , Interações Hospedeiro-Patógeno/genética , Macrófagos , Células-Tronco , SuínosRESUMO
African swine fever virus (ASFV) causes a lethal, haemorrhagic disease in domestic swine that threatens pig production across the globe. Unlike domestic pigs, warthogs, which are wildlife hosts of the virus, do not succumb to the lethal effects of infection. There are three amino acid differences between the sequence of the warthog and domestic pig RELA protein; a subunit of the NF-κB transcription factor that plays a key role in regulating the immune response to infections. Domestic pigs with all 3 or 2 of the amino acids from the warthog RELA orthologue have been generated by gene editing. To assess if these variations confer resilience to ASF we established an intranasal challenge model with a moderately virulent ASFV. No difference in clinical, virological or pathological parameters were observed in domestic pigs with the 2 amino acid substitution. Domestic pigs with all 3 amino acids found in warthog RELA were not resilient to ASF but a delay in onset of clinical signs and less viral DNA in blood samples and nasal secretions was observed in some animals. Inclusion of these and additional warthog genetic traits into domestic pigs may be one way to assist in combating the devastating impact of ASFV.