Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Am J Physiol Gastrointest Liver Physiol ; 326(1): G3-G15, 2024 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-37874654

RESUMO

Concentrated animal feeding operations (CAFOs) are responsible for the production of global greenhouse gases and harmful environmental pollutants including hydrogen sulfide, ammonia, and particulate matter. Swine farmers are frequently exposed to organic dust that is proinflammatory in the lung and are thus at greater risk of developing pneumonia, asthma, and other respiratory conditions. In addition to respiratory disease, air pollutants are directly associated with altered gastrointestinal (GI) physiology and the development of GI diseases, thereby highlighting the gut-lung axis in disease progression. Instillation of hog dust extract (HDE) for 3 wk has been reported to promote the development of chronic airway inflammation in mice, however, the impact of HDE exposure on intestinal homeostasis is poorly understood. We report that 3-wk intranasal exposure of HDE is associated with increased intestinal macromolecule permeability and elevated serum endotoxin concentrations in C57BL/6J mice. In vivo studies also indicated mislocalization of the epithelial cell adhesion protein, E-cadherin, in the colon as well as an increase in the proinflammatory cytokine, Tnfα, in the proximal colon. Moreover, mRNA expression of the Paneth cell-associated marker, Lyz1, was increased the proximal colon, whereas the expression of the goblet cell marker, Muc2, was unchanged in the epithelial cells of the ileum, cecum, and distal colon. These results demonstrate that airway exposure to CAFOs dusts promote airway inflammation and modify the gastrointestinal tract to increase intestinal permeability, induce systemic endotoxemia, and promote intestinal inflammation. Therefore, this study identifies complex physiological consequences of chronic exposure to organic dusts derived from CAFOs on the gut-lung axis.NEW & NOTEWORTHY Agricultural workers have a higher prevalence of occupational respiratory symptoms and are at greater risk of developing respiratory diseases. However, gastrointestinal complications have also been reported, yet the intestinal pathophysiology is understudied. This work is novel because it emphasizes the role of an inhaled environmental pollutant on the development of intestinal pathophysiological outcomes. This work will provide foundation for other studies evaluating how agricultural dusts disrupts host physiology and promotes debilitating gastrointestinal and systemic disorders.


Assuntos
Poeira , Endotoxemia , Camundongos , Animais , Suínos , Fator de Necrose Tumoral alfa/metabolismo , Camundongos Endogâmicos C57BL , Inflamação
2.
JCI Insight ; 8(4)2023 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-36810248

RESUMO

Macrophages intimately interact with intestinal epithelial cells, but the consequences of defective macrophage-epithelial cell interactions for protection against enteric pathogens are poorly understood. Here, we show that in mice with a deletion in protein tyrosine phosphatase nonreceptor type 2 (PTPN2) in macrophages, infection with Citrobacter rodentium, a model of enteropathogenic and enterohemorrhagic E. coli infection in humans, promoted a strong type 1/IL-22-driven immune response, culminating in accelerated disease but also faster clearance of the pathogen. In contrast, deletion of PTPN2 specifically in epithelial cells rendered the epithelium unable to upregulate antimicrobial peptides and consequently resulted in a failure to eliminate the infection. The ability of PTPN2-deficient macrophages to induce faster recovery from C. rodentium was dependent on macrophage-intrinsic IL-22 production, which was highly increased in macrophages deficient in PTPN2. Our findings demonstrate the importance of macrophage-mediated factors, and especially macrophage-derived IL-22, for the induction of protective immune responses in the intestinal epithelium, and show that normal PTPN2 expression in the epithelium is crucial to allow for protection against enterohemorrhagic E. coli and other intestinal pathogens.


Assuntos
Infecções por Enterobacteriaceae , Escherichia coli Êntero-Hemorrágica , Infecções por Escherichia coli , Proteína Tirosina Fosfatase não Receptora Tipo 2 , Animais , Humanos , Camundongos , Células Epiteliais/patologia , Proteína Tirosina Fosfatase não Receptora Tipo 2/metabolismo
3.
Life Sci ; 288: 120153, 2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-34801513

RESUMO

AIMS: To characterize neuroinflammatory and gut dysbiosis signatures that accompany exaggerated exercise fatigue and cognitive/mood deficits in a mouse model of Gulf War Illness (GWI). METHODS: Adult male C57Bl/6N mice were exposed for 28 d (5 d/wk) to pyridostigmine bromide (P.O.) at 6.5 mg/kg/d, b.i.d. (GW1) or 8.7 mg/kg/d, q.d. (GW2); topical permethrin (1.3 mg/kg), topical N,N-diethyl-meta-toluamide (33%) and restraint stress (5 min). Animals were phenotypically evaluated as described in an accompanying article [124] and sacrificed at 6.6 months post-treatment (PT) to allow measurement of brain neuroinflammation/neuropathic pain gene expression, hippocampal glial fibrillary acidic protein, brain Interleukin-6, gut dysbiosis and serum endotoxin. KEY FINDINGS: Compared to GW1, GW2 showed a more intense neuroinflammatory transcriptional signature relative to sham stress controls. Interleukin-6 was elevated in GW2 and astrogliosis in hippocampal CA1 was seen in both GW groups. Beta-diversity PCoA using weighted Unifrac revealed that gut microbial communities changed after exposure to GW2 at PT188. Both GW1 and GW2 displayed systemic endotoxemia, suggesting a gut-brain mechanism underlies the neuropathological signatures. Using germ-free mice, probiotic supplementation with Lactobacillus reuteri produced less gut permeability than microbiota transplantation using GW2 feces. SIGNIFICANCE: Our findings demonstrate that GW agents dose-dependently induce differential neuropathology and gut dysbiosis associated with cognitive, exercise fatigue and mood GWI phenotypes. Establishment of a comprehensive animal model that recapitulates multiple GWI symptom domains and neuroinflammation has significant implications for uncovering pathophysiology, improving diagnosis and treatment for GWI.


Assuntos
Disfunção Cognitiva/patologia , Disbiose/patologia , Fadiga/patologia , Microbioma Gastrointestinal , Doenças Neuroinflamatórias/patologia , Síndrome do Golfo Pérsico/tratamento farmacológico , Condicionamento Físico Animal , Brometo de Piridostigmina/toxicidade , Animais , Biomarcadores/análise , Inibidores da Colinesterase/administração & dosagem , Inibidores da Colinesterase/toxicidade , Disfunção Cognitiva/etiologia , Disfunção Cognitiva/metabolismo , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Disbiose/etiologia , Disbiose/metabolismo , Endotoxemia/etiologia , Endotoxemia/metabolismo , Endotoxemia/patologia , Fadiga/etiologia , Fadiga/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica/efeitos dos fármacos , Gliose/etiologia , Gliose/metabolismo , Gliose/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neuralgia/etiologia , Neuralgia/metabolismo , Neuralgia/patologia , Doenças Neuroinflamatórias/etiologia , Doenças Neuroinflamatórias/metabolismo , Brometo de Piridostigmina/administração & dosagem
4.
Gut ; 71(1): 89-99, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-33563644

RESUMO

OBJECTIVES: Alterations in the intestinal microbiota are linked with a wide range of autoimmune and inflammatory conditions, including inflammatory bowel diseases (IBD), where pathobionts penetrate the intestinal barrier and promote inflammatory reactions. In patients with IBD, the ability of intestinal macrophages to efficiently clear invading pathogens is compromised resulting in increased bacterial translocation and excessive immune reactions. Here, we investigated how an IBD-associated loss-of-function variant in the protein tyrosine phosphatase non-receptor type 2 (PTPN2) gene, or loss of PTPN2 expression affected the ability of macrophages to respond to invading bacteria. DESIGN: IBD patient-derived macrophages with wild-type (WT) PTPN2 or carrying the IBD-associated PTPN2 SNP, peritoneal macrophages from WT and constitutive PTPN2-knockout mice, as well as mice specifically lacking PTPN2 in macrophages were infected with non-invasive K12 Escherichia coli, the human adherent-invasive E. coli (AIEC) LF82, or a novel mouse AIEC (mAIEC) strain. RESULTS: Loss of PTPN2 severely compromises the ability of macrophages to clear invading bacteria. Specifically, loss of functional PTPN2 promoted pathobiont invasion/uptake into macrophages and intracellular survival/proliferation by three distinct mechanisms: Increased bacterial uptake was mediated by enhanced expression of carcinoembryonic antigen cellular adhesion molecule (CEACAM)1 and CEACAM6 in PTPN2-deficient cells, while reduced bacterial clearance resulted from defects in autophagy coupled with compromised lysosomal acidification. In vivo, mice lacking PTPN2 in macrophages were more susceptible to mAIEC infection and mAIEC-induced disease. CONCLUSIONS: Our findings reveal a tripartite regulatory mechanism by which PTPN2 preserves macrophage antibacterial function, thus crucially contributing to host defence against invading bacteria.


Assuntos
Aderência Bacteriana , Infecções por Escherichia coli/imunologia , Macrófagos/imunologia , Proteína Tirosina Fosfatase não Receptora Tipo 2/imunologia , Animais , Antígenos CD/metabolismo , Antígeno Carcinoembrionário/metabolismo , Moléculas de Adesão Celular/metabolismo , Modelos Animais de Doenças , Escherichia coli/genética , Escherichia coli/fisiologia , Proteínas Ligadas por GPI/metabolismo , Microbioma Gastrointestinal , Predisposição Genética para Doença , Doenças Inflamatórias Intestinais/genética , Doenças Inflamatórias Intestinais/imunologia , Doenças Inflamatórias Intestinais/microbiologia , Camundongos Knockout , Proteína Tirosina Fosfatase não Receptora Tipo 2/genética
5.
Mucosal Immunol ; 15(1): 74-83, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34420044

RESUMO

Macrophages are a heterogeneous population of innate immune cells that are often divided into two major subsets: classically activated, typically pro-inflammatory (M1) macrophages that mediate host defense, and alternatively activated, tolerance-inducing (M2) macrophages that exert homeostatic and tissue-regenerative functions. Disturbed macrophage function/differentiation results either in inadequate, excessive immune activation or in a failure to induce efficient protective immune responses against pathogens. Loss-of-function variants in protein tyrosine phosphatase non-receptor type 2 (PTPN2) are associated with chronic inflammatory disorders, but the effect of macrophage-intrinsic PTPN2 loss is still poorly understood. Here we report that PTPN2-deficient macrophages fail to acquire an alternatively activated/M2 phenotype. This was the consequence of reduced IL-6 receptor expression and a failure to induce IL-4 receptor in response to IL-6, resulting in an inability to respond to the key M2-inducing cytokine IL-4. Ultimately, failure to adequately respond to IL-6 and IL-4 resulted in increased levels of M1 macrophage marker expression in vitro and exacerbated lung inflammation upon infection with Nippostrongylus brasiliensis in vivo. These results demonstrate that PTPN2 loss interferes with the ability of macrophages to adequately respond to inflammatory stimuli and might explain the increased susceptibility of PTPN2 loss-of-function carriers to developing inflammatory diseases.


Assuntos
Inflamação/imunologia , Pulmão/imunologia , Macrófagos/imunologia , Nippostrongylus/fisiologia , Proteína Tirosina Fosfatase não Receptora Tipo 2/metabolismo , Infecções por Strongylida/imunologia , Animais , Diferenciação Celular , Técnicas de Silenciamento de Genes , Humanos , Interleucina-4/metabolismo , Pulmão/parasitologia , Camundongos , Camundongos Knockout , Proteína Tirosina Fosfatase não Receptora Tipo 2/genética , Células THP-1 , Células Th1/imunologia , Células Th2/imunologia
6.
J Clin Invest ; 131(17)2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-34623320

RESUMO

Genome-wide association studies revealed that loss-of-function mutations in protein tyrosine phosphatase non-receptor type 2 (PTPN2) increase the risk of developing chronic immune diseases, such as inflammatory bowel disease (IBD) and celiac disease. These conditions are associated with increased intestinal permeability as an early etiological event. The aim of this study was to examine the consequences of deficient activity of the PTPN2 gene product, T cell protein tyrosine phosphatase (TCPTP), on intestinal barrier function and tight junction organization in vivo and in vitro. Here, we demonstrate that TCPTP protected against intestinal barrier dysfunction induced by the inflammatory cytokine IFN-γ by 2 mechanisms: it maintained localization of zonula occludens 1 and occludin at apical tight junctions and restricted both expression and insertion of the cation pore-forming transmembrane protein, claudin-2, at tight junctions through upregulation of the inhibitory cysteine protease, matriptase. We also confirmed that the loss-of-function PTPN2 rs1893217 SNP was associated with increased intestinal claudin-2 expression in patients with IBD. Moreover, elevated claudin-2 levels and paracellular electrolyte flux in TCPTP-deficient intestinal epithelial cells were normalized by recombinant matriptase. Our findings uncover distinct and critical roles for epithelial TCPTP in preserving intestinal barrier integrity, thereby proposing a mechanism by which PTPN2 mutations contribute to IBD.


Assuntos
Mucosa Intestinal/metabolismo , Proteína Tirosina Fosfatase não Receptora Tipo 2/metabolismo , Junções Íntimas/metabolismo , Adolescente , Adulto , Idoso , Animais , Claudinas/metabolismo , Modelos Animais de Doenças , Feminino , Estudo de Associação Genômica Ampla , Humanos , Técnicas In Vitro , Doenças Inflamatórias Intestinais/etiologia , Doenças Inflamatórias Intestinais/genética , Doenças Inflamatórias Intestinais/metabolismo , Mucosa Intestinal/patologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Pessoa de Meia-Idade , Permeabilidade , Polimorfismo de Nucleotídeo Único , Proteína Tirosina Fosfatase não Receptora Tipo 2/deficiência , Proteína Tirosina Fosfatase não Receptora Tipo 2/genética , Junções Íntimas/patologia , Adulto Jovem
7.
J Crohns Colitis ; 15(3): 471-484, 2021 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-32909045

RESUMO

BACKGROUND AND AIMS: Loss-of-function variants in protein tyrosine phosphatase non-receptor type-2 [PTPN2] promote susceptibility to inflammatory bowel diseases [IBD]. PTPN2 regulates Janus-kinase [JAK] and signal transducer and activator of transcription [STAT] signalling, while protecting the intestinal epithelium from inflammation-induced barrier disruption. The pan-JAK inhibitor tofacitinib is approved to treat ulcerative colitis, but its effects on intestinal epithelial cell-macrophage interactions and on barrier properties are unknown. We aimed to determine if tofacitinib can rescue disrupted epithelial-macrophage interaction and barrier function upon loss of PTPN2. METHODS: Human Caco-2BBe intestinal epithelial cells [IECs] and THP-1 macrophages expressing control or PTPN2-specific shRNA were co-cultured with tofacitinib or vehicle. Transepithelial electrical resistance and 4 kDa fluorescein-dextran flux were measured to assess barrier function. Ptpn2fl/fl and Ptpn2-LysMCre mice, which lack Ptpn2 in myeloid cells, were treated orally with tofacitinib citrate twice daily to assess the in vivo effect on the intestinal epithelial barrier. Colitis was induced via administration of 1.5% dextran sulphate sodium [DSS] in drinking water. RESULTS: Tofacitinib corrected compromised barrier function upon PTPN2 loss in macrophages and/or IECs via normalisation of: [i] tight junction protein expression; [ii] excessive STAT3 signalling; and [iii] IL-6 and IL-22 secretion. In Ptpn2-LysMCre mice, tofacitinib reduced colonic pro-inflammatory macrophages, corrected underlying permeability defects, and prevented the increased susceptibility to DSS colitis. CONCLUSIONS: PTPN2 loss in IECs or macrophages compromises IEC-macrophage interactions and reduces epithelial barrier integrity. Both of these events were corrected by tofacitinib in vitro and in vivo. Tofacitinib may have greater therapeutic efficacy in IBD patients harbouring PTPN2 loss-of-function mutations.


Assuntos
Células Epiteliais/enzimologia , Mucosa Intestinal/enzimologia , Inibidores de Janus Quinases/farmacologia , Macrófagos/enzimologia , Piperidinas/farmacologia , Pirimidinas/farmacologia , Animais , Comunicação Celular/efeitos dos fármacos , Técnicas de Cocultura , Modelos Animais de Doenças , Células Epiteliais/imunologia , Humanos , Interleucina-6/metabolismo , Interleucinas/metabolismo , Mucosa Intestinal/imunologia , Macrófagos/imunologia , Camundongos Knockout , Proteína Tirosina Fosfatase não Receptora Tipo 2/genética , Proteína Tirosina Fosfatase não Receptora Tipo 2/fisiologia , Fator de Transcrição STAT3/fisiologia , Transdução de Sinais , Interleucina 22
8.
Gastroenterology ; 159(5): 1763-1777.e14, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32652144

RESUMO

BACKGROUND & AIMS: The mechanisms by which macrophages regulate intestinal epithelial cell (IEC) barrier properties are poorly understood. Protein tyrosine phosphatase non-receptor type 2 (PTPN2) protects the IEC barrier from inflammation-induced disruption and regulates macrophage functions. We investigated whether PTPN2 controls interactions between IECs and macrophages to maintain intestinal barrier function. METHODS: Human IEC (Caco-2BBe/HT-29.cl19a cells) and mouse enteroid monolayers were cocultured with human macrophages (THP-1, U937, primary monocyte-derived macrophages from patients with inflammatory bowel disease [IBD]) or mouse macrophages, respectively. We assessed barrier function (transepithelial electrical resistance [TEER] and permeability to 4-kDa fluorescently labeled dextran or 70-kDa rhodamine B-dextran) and macrophage polarization. We analyzed intestinal tissues from mice with myeloid cell-specific deletion of PTPN2 (Ptpn2-LysMCre mice) and mice without disruption of Ptpn2 (controls); some mice were given injections of a neutralizing antibody against interleukin (IL) 6. Proteins were knocked down in macrophages and/or IECs with small hairpin RNAs. RESULTS: Knockdown of PTPN2 in either macrophages and/or IECs increased the permeability of IEC monolayers, had a synergistic effect when knocked down from both cell types, and increased the development of inflammatory macrophages in macrophage-IEC cocultures. Colon lamina propria from Ptpn2-LysMCre mice had significant increases in inflammatory macrophages; these mice had increased in vivo and ex vivo colon permeability to 4-kDa fluorescently labeled dextran and reduced ex vivo colon TEER. Nanostring analysis showed significant increases in the expression of IL6 in colon macrophages from Ptpn2-LysMCre mice. An IL6-blocking antibody reversed the effects of PTPN2-deficient macrophages, reducing the permeability of IEC monolayers in culture and in Ptpn2-LysMCre mice. Macrophages from patients with IBD carrying a single-nucleotide polymorphism associated with the disease (PTPN2 rs1893217) had the same features of PTPN2-deficient macrophages from mice, including reduced TEER and increased permeability in cocultures with human IEC or mouse enteroid monolayers, which were restored by anti-IL6. CONCLUSIONS: PTPN2 is required for interactions between macrophages and IECs; loss of PTPN2 from either cell type results in intestinal barrier defects, and loss from both cell types has a synergistic effect. We provide a mechanism by which the PTPN2 gene variants compromise intestinal epithelial barrier function and increase the risk of inflammatory disorders such as IBD.


Assuntos
Comunicação Celular , Células Epiteliais/enzimologia , Doenças Inflamatórias Intestinais/enzimologia , Absorção Intestinal , Mucosa Intestinal/enzimologia , Macrófagos/enzimologia , Proteína Tirosina Fosfatase não Receptora Tipo 2/metabolismo , Adulto , Células CACO-2 , Técnicas de Cocultura , Células Epiteliais/imunologia , Feminino , Humanos , Imunidade Inata , Imunidade nas Mucosas , Mediadores da Inflamação/metabolismo , Doenças Inflamatórias Intestinais/imunologia , Mucosa Intestinal/imunologia , Macrófagos/imunologia , Masculino , Pessoa de Meia-Idade , Permeabilidade , Proteína Tirosina Fosfatase não Receptora Tipo 2/genética , Transdução de Sinais , Células THP-1 , Células U937
9.
Inflamm Bowel Dis ; 26(7): 1038-1049, 2020 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-32031616

RESUMO

BACKGROUND: The single nucleotide polymorphism (SNP) rs1893217 within the gene locus encoding PTPN2 represents a risk factor for inflammatory bowel disease (IBD). Our previous work demonstrated reduced PTPN2 activity and subsequently increased inflammatory signaling upon presence of SNP rs1893217. The naturally occurring polyamine spermidine reduces pro-inflammatory signaling via induction of PTPN2 activity; however, the effect of SNP rs1893217 on the anti-inflammatory potential of spermidine is still unknown. Here, we investigated how presence of SNP rs1893217 affects treatment efficacy of spermidine and whether it might serve as a potential biomarker for spermidine treatment. METHODS: Human T84 (wild-type [WT] for PTPN2 SNP rs1893217) and HT29 (heterozygous for PTPN2 SNP rs1893217) intestinal epithelial cells (IECs) were treated with several polyamines from the putrescine-spermidine pathway. T84 and HT29 IECs, THP-1 monocytes (WT and transfected with a lentiviral vector expressing PTPN2 SNP rs1893217) and genotyped, patient-derived peripheral blood mononuclear cells were challenged with IFN-γ and/or spermidine. RESULTS: Among the analyzed polyamines, spermidine was the most efficient activator of PTPN2 phosphatase activity, regardless of the PTPN2 genotype. Spermidine suppressed IFN-γ-induced STAT1 and STAT3 phosphorylation, along with decreased mRNA expression of ICAM-1, NOD2, and IFNG in IECs and monocytes. Of note, these effects were clearly more pronounced when the disease-associated PTPN2 C-variant in SNP rs1893217 was present. CONCLUSIONS: Our data demonstrate that spermidine is the most potent polyamine in the putrescine-spermine axis for inducing PTPN2 enzymatic activity. The anti-inflammatory effect of spermidine is potentiated in the presence of SNP rs1893217, and this SNP might thus be a useful biomarker for possible spermidine-treatment in IBD patients.


Assuntos
Anti-Inflamatórios/metabolismo , Doenças Inflamatórias Intestinais/genética , Polimorfismo de Nucleotídeo Único/fisiologia , Proteína Tirosina Fosfatase não Receptora Tipo 2/genética , Espermidina/metabolismo , Estudos de Casos e Controles , Linhagem Celular , Células Epiteliais/metabolismo , Genótipo , Humanos , Doenças Inflamatórias Intestinais/sangue , Interferon gama/metabolismo , Mucosa Intestinal/citologia , Mucosa Intestinal/metabolismo , Leucócitos Mononucleares/metabolismo , Fosforilação/genética , Transdução de Sinais/genética
10.
Inflamm Bowel Dis ; 26(3): 407-422, 2020 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-31751457

RESUMO

BACKGROUND: Alterations to epithelial tight junctions can compromise the ability of the epithelium to act as a barrier between luminal contents and the underlying tissues, thereby increasing intestinal permeability, an early critical event in inflammatory bowel disease (IBD). Tofacitinib (Xeljanz), an orally administered pan-Janus kinase (JAK) inhibitor, was recently approved for the treatment of moderate to severe ulcerative colitis. Nevertheless, the effects of tofacitinib on intestinal epithelial cell functions are largely unknown. The aim of this study was to determine if JAK inhibition by tofacitinib can rescue cytokine-induced barrier dysfunction in intestinal epithelial cells (IECs). METHODS: T84 IECs were used to evaluate the effects of tofacitinib on JAK-signal transducer and activator of transcription (STAT) activation, barrier permeability, and expression and localization of tight junction proteins. The impact of tofacitinib on claudin-2 promoter activity was assessed in HT-29 IECs. Tofacitinib rescue of barrier function was also tested in human colonic stem cell-derived organoids. RESULTS: Pretreatment with tofacitinib prevented IFN-γ-induced decreases in transepithelial electrical resistance (TER) and increases in 4 kDa FITC-dextran permeability (FD4), partly due to claudin-2 transcriptional regulation and restriction of ZO-1 rearrangement at tight junctions. Although tofacitinib administered after IFN-γ challenge only partially normalized TER and claudin-2 levels, FD4 permeability and ZO-1 localization were fully recovered. The IFN-γ-induced FD4 permeability in primary human colonoids was fully rescued by tofacitinib. CONCLUSIONS: These data suggest differential therapeutic efficacy of tofacitinib in the rescue of pore vs leak-tight junction barrier defects and indicate a potential contribution of improved epithelial barrier function to the beneficial effects of tofacitinib in IBD patients.


Assuntos
Células Epiteliais/efeitos dos fármacos , Doenças Inflamatórias Intestinais/metabolismo , Mucosa Intestinal/metabolismo , Inibidores de Janus Quinases/farmacologia , Piperidinas/farmacologia , Pirimidinas/farmacologia , Claudinas/metabolismo , Colo/citologia , Células Epiteliais/metabolismo , Células HT29 , Humanos , Interferon gama/toxicidade , Mucosa Intestinal/fisiopatologia , Intestinos/citologia , Permeabilidade/efeitos dos fármacos , Proteínas de Junções Íntimas/genética , Junções Íntimas/metabolismo
11.
Cell Rep ; 22(7): 1835-1848, 2018 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-29444435

RESUMO

Variants in the gene locus encoding protein tyrosine phosphatase non-receptor type 2 (PTPN2) are associated with inflammatory disorders, including inflammatory bowel diseases, rheumatoid arthritis, and type 1 diabetes. The anti-inflammatory role of PTPN2 is highlighted by the fact that PTPN2-deficient mice die a few weeks after birth because of systemic inflammation and severe colitis. However, the tissues, cells, and molecular mechanisms that contribute to this phenotype remain unclear. Here, we demonstrate that myeloid cell-specific deletion of PTPN2 in mice (PTPN2-LysMCre) promotes intestinal inflammation but protects from colitis-associated tumor formation in an IL-1ß-dependent manner. Elevated levels of mature IL-1ß production in PTPN2-LysMCre mice are a consequence of increased inflammasome assembly due to elevated phosphorylation of the inflammasome adaptor molecule ASC. Thus, we have identified a dual role for myeloid PTPN2 in directly regulating inflammasome activation and IL-1ß production to suppress pro-inflammatory responses during colitis but promote intestinal tumor development.


Assuntos
Neoplasias do Colo/patologia , Inflamassomos/metabolismo , Inflamação/patologia , Intestinos/patologia , Proteína Tirosina Fosfatase não Receptora Tipo 2/metabolismo , Doença Aguda , Adulto , Idoso , Animais , Proteínas Adaptadoras de Sinalização CARD/metabolismo , Linhagem Celular , Membrana Celular/metabolismo , Colite/metabolismo , Colite/patologia , Neoplasias do Colo/sangue , Deleção de Genes , Humanos , Inflamação/sangue , Integrases/metabolismo , Interleucina-10/deficiência , Interleucina-10/metabolismo , Interleucina-1alfa/sangue , Interleucina-1beta/metabolismo , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Macrófagos/metabolismo , Camundongos , Pessoa de Meia-Idade , Células Mieloides/metabolismo , Carga Tumoral
12.
Ann N Y Acad Sci ; 1405(1): 116-130, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28804910

RESUMO

T cell protein tyrosine phosphatase (TCPTP) dephosphorylates a number of substrates, including JAK-STAT (signal transducer and activator of transcription) signaling proteins, which are activated by interferon (IFN)-γ, a major proinflammatory cytokine involved in conditions such as inflammatory bowel disease. A critical function of the intestinal epithelium is formation of a selective barrier to luminal contents. The structural units of the epithelium that regulate barrier function are the tight junctions (TJs), and the protein composition of the TJ determines the tightness of the barrier. Claudin-2 is a TJ protein that increases permeability to cations and reduces transepithelial electrical resistance (TER). We previously showed that transient knockdown (KD) of TCPTP permits increased expression of claudin-2 by IFN-γ. Here, we demonstrate that the decreased TER in TCPTP-deficient epithelial cells is alleviated by STAT1 KD. Moreover, increased claudin-2 in TCPTP-deficient cells requires enhanced STAT1 activation and STAT1 binding to the CLDN2 promoter. We also show that mutation of this STAT-binding site prevents elevated CLDN2 promoter activity in TCPTP-deficient epithelial cells. In summary, we demonstrate that TCPTP protects the intestinal epithelial barrier by restricting STAT-induced claudin-2 expression. This is a potential mechanism by which loss-of-function mutations in the gene encoding TCPTP may contribute to barrier defects in chronic intestinal inflammatory disease.


Assuntos
Claudina-2/metabolismo , Mucosa Intestinal/metabolismo , Proteína Tirosina Fosfatase não Receptora Tipo 2/metabolismo , Fator de Transcrição STAT1/metabolismo , Junções Íntimas/metabolismo , Linhagem Celular , Claudina-2/genética , Células Epiteliais/citologia , Células Epiteliais/metabolismo , Humanos , Mucosa Intestinal/citologia , Regiões Promotoras Genéticas , Proteína Tirosina Fosfatase não Receptora Tipo 2/genética , Fator de Transcrição STAT1/genética
13.
Cell Mol Gastroenterol Hepatol ; 3(1): 41-50, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28174756

RESUMO

Pathobiont expansion, such as that of adherent-invasive Escherichia coli (AIEC), is an emerging factor associated with inflammatory bowel disease. The intestinal epithelial barrier is the first line of defense against these pathogens. Inflammation plays a critical role in altering the epithelial barrier and is a major factor involved in promoting the expansion and pathogenesis of AIEC. AIEC in turn can exacerbate intestinal epithelial barrier dysfunction by targeting multiple elements of the barrier. One critical element of the epithelial barrier is the tight junction. Increasing evidence suggests that AIEC may selectively target protein components of tight junctions, leading to increased barrier permeability. This may represent one mechanism by which AIEC could contribute to the development of inflammatory bowel disease. This review article discusses potential mechanisms by which AIEC can disrupt epithelial tight junction function and intestinal barrier function.

14.
Inflamm Bowel Dis ; 22(12): 2811-2823, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27824650

RESUMO

BACKGROUND: VSL#3 is a probiotic compound that has been used in the treatment of inflammatory bowel disease. T-cell protein tyrosine phosphatase (TCPTP) is the protein product of the inflammatory bowel disease candidate gene, PTPN2, and we have previously shown that it protects epithelial barrier function. The aim of this study was to investigate whether VSL#3 improves intestinal epithelial barrier function against the effects of the inflammatory bowel disease-associated proinflammatory cytokine, interferon-gamma (IFN-γ) through activation of TCPTP. METHODS: Polarized monolayers of T84 intestinal epithelial cells were treated with increasing concentrations of VSL#3 to determine effects on TCPTP expression and enzymatic activity. Therapeutic effects of VSL#3 against barrier disruption by IFN-γ were measured by transepithelial electrical resistance and fluorescein isothiocyanate-dextran permeability. A novel TCPTP-deficient HT-29 intestinal epithelial cell line was generated to study the role of TCPTP in mediating the effects of VSL#3. Tight junction protein distribution was assessed with confocal microscopy. RESULTS: VSL#3 increased TCPTP protein levels and enzymatic activity, correlating with a VSL#3-induced decrease in IFN-γ signaling. VSL#3 corrected the decrease in transepithelial electrical resistance and the increase in epithelial permeability induced by IFN-γ. Moreover, the restorative effect of VSL#3 against IFN-γ signaling, epithelial permeability defects, altered expression and localization of the tight junction proteins claudin-2, occludin, and zonula occludens-1, were not realized in stable TCPTP/(PTPN2)-deficient HT-29 intestinal epithelial cells. CONCLUSIONS: VSL#3 reduces IFN-γ signaling and IFN-γ-induced epithelial barrier defects in a TCPTP-dependent manner. These data point to a key role for TCPTP as a therapeutic target for restoration of barrier function using probiotics.


Assuntos
Interferon gama/fisiologia , Mucosa Intestinal/microbiologia , Probióticos/farmacologia , Proteína Tirosina Fosfatase não Receptora Tipo 2/fisiologia , Células Epiteliais/metabolismo , Células HT29 , Humanos , Doenças Inflamatórias Intestinais/imunologia , Doenças Inflamatórias Intestinais/microbiologia , Mucosa Intestinal/imunologia , Junções Íntimas/fisiologia
15.
Pharmacol Res Perspect ; 3(2): e00128, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26038704

RESUMO

Linaclotide, a synthetic guanylyl cyclase C (GC-C) agonist, and the prostone analog, Lubiprostone, are approved to manage chronic idiopathic constipation and constipation-predominant irritable bowel syndrome. Lubiprostone also protects intestinal mucosal barrier function in ischemia. GC-C signaling regulates local fluid balance and other components of intestinal mucosal homeostasis including epithelial barrier function. The aim of this study was to compare if select dosing regimens differentially affect linaclotide and lubiprostone modulation of ion transport and barrier properties of normal human colonic mucosa. Normal sigmoid colon biopsies from healthy subjects were mounted in Ussing chambers. Tissues were treated with linaclotide, lubiprostone, or vehicle to determine effects on short-circuit current (I sc). Subsequent I sc responses to the cAMP agonist, forskolin, and the calcium agonist, carbachol, were also measured to assess if either drug caused desensitization. Barrier properties were assessed by measuring transepithelial electrical resistance. I sc responses to linaclotide and lubiprostone were significantly higher than vehicle control when administered bilaterally or to the mucosal side only. Single versus cumulative concentrations of linaclotide showed differences in efficacy while cumulative but not single dosing caused desensitization to forskolin. Lubiprostone reduced forskolin responses under all conditions. Linaclotide and lubiprostone exerted a positive effect on TER that was dependent on the dosing regimen. Linaclotide and lubiprostone increase ion transport responses across normal human colon but linaclotide displays increased sensitivity to the dosing regimen used. These findings may have implications for dosing protocols of these agents in patients with constipation.

16.
Gastroenterology ; 145(6): 1358-1368.e1-4, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24001788

RESUMO

BACKGROUND & AIMS: Salmonella enterica serovar Typhimurium is an enteropathogen that causes self-limiting diarrhea in healthy individuals, but poses a significant health threat to vulnerable populations. Our understanding of the pathogenesis of Salmonella-induced diarrhea has been hampered by the lack of a suitable mouse model. After a dose of oral kanamycin, Salmonella-infected congenic BALB/c.D2(NrampG169) mice, which carry a wild-type Nramp1 gene, develop clear manifestations of diarrhea. We used this model to elucidate the pathophysiology of Salmonella-induced diarrhea. METHODS: BALB /c.D2(NrampG169) mice were treated with kanamycin and then infected with wild-type or mutant Salmonella by oral gavage. Colon tissues were isolated and Ussing chambers, quantitative polymerase chain reaction, immunoblot, and confocal microscopy analyses were used to study function and expression of ion transporters and cell proliferation. RESULTS: Studies with Ussing chambers demonstrated reduced basal and/or adenosine 3',5'-cyclic monophosphate-mediated electrogenic ion transport in infected colonic tissues, attributable to changes in chloride or sodium transport, depending on the segment studied. The effects of infection were mediated, at least in part, by effector proteins secreted by the bacterial Salmonella pathogenicity island 1- and Salmonella pathogenicity island-2-encoded virulence systems. Infected tissue showed reduced expression of the chloride-bicarbonate exchanger down-regulated in adenoma in surface colonic epithelial cells. Cystic fibrosis transmembrane conductance regulator was internalized in colonic crypt epithelial cells without a change in overall expression levels. Confocal analyses, densitometry, and quantitative polymerase chain reaction revealed that expression of epithelial sodium channel ß was reduced in distal colons of Salmonella-infected mice. The changes in transporter expression, localization, and/or function were accompanied by crypt hyperplasia in Salmonella-infected mice. CONCLUSIONS: Salmonella infection induces diarrhea by altering expression and/or function of transporters that mediate water absorption in the colon, likely reflecting the fact that epithelial cells have less time to differentiate into surface cells when proliferation rates are increased by infection.


Assuntos
Proteínas de Transporte de Cátions/fisiologia , Regulador de Condutância Transmembrana em Fibrose Cística/fisiologia , Diarreia/fisiopatologia , Enterite/fisiopatologia , Canais Epiteliais de Sódio/fisiologia , Transporte de Íons/fisiologia , Salmonella typhimurium/patogenicidade , Animais , Proteínas de Transporte de Cátions/genética , Diferenciação Celular/fisiologia , Proliferação de Células , Colo/microbiologia , Colo/patologia , Colo/fisiopatologia , Modelos Animais de Doenças , Enterite/microbiologia , Feminino , Hiperplasia , Mucosa Intestinal/microbiologia , Mucosa Intestinal/patologia , Mucosa Intestinal/fisiopatologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C
17.
J Biol Chem ; 288(45): 32651-32662, 2013 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-24022492

RESUMO

The gene locus encoding protein-tyrosine phosphatase non-receptor type 2 (PTPN2) has been associated with inflammatory bowel disease. Expression of the PTPN2 gene product, T cell protein-tyrosine phosphatase (TCPTP), in intestinal epithelial cells has been shown to play an important role in the protection of epithelial barrier function during periods of inflammation by acting as a negative regulator of the proinflammatory cytokine IFN-γ. Therefore, agents that increase the activity of TCPTP are of general interest as modifiers of inflammatory signaling events. A previous study demonstrated that the small molecule spermidine is a selective activator of TCPTP in vitro. The aim of this study was to investigate whether activation of TCPTP by spermidine was capable of alleviating IFN-γ-induced, proinflammatory signaling and barrier dysfunction in human intestinal epithelial cells. Studies revealed that treatment of T84 and HT29/cl.19A colonocytes with spermidine increased both TCPTP protein levels and enzymatic activity, correlating with a decrease in the phosphorylation of the signal transducers and activators of transcription 1 and 3, downstream mediators of IFN-γ signaling, upon coadministration of spermidine to IFN-γ-treated cells. On a functional level, spermidine protected barrier function in the setting of inflammation, restricting the decrease in transepithelial electrical resistance and the increase in epithelial permeability induced by IFN-γ in coincubation experiments. These data implicate spermidine as a potential therapeutic agent to treat conditions associated with elevated IFN-γ signaling and a faulty mucosal barrier.


Assuntos
Células Epiteliais/enzimologia , Interferon gama/farmacologia , Mucosa Intestinal/enzimologia , Proteína Tirosina Fosfatase não Receptora Tipo 2/metabolismo , Transdução de Sinais/efeitos dos fármacos , Espermidina/farmacologia , Linhagem Celular , Células Epiteliais/citologia , Humanos , Mucosa Intestinal/citologia , Permeabilidade/efeitos dos fármacos , Fosforilação/efeitos dos fármacos , Fosforilação/genética , Proteína Tirosina Fosfatase não Receptora Tipo 2/genética
18.
PLoS One ; 8(9): e73703, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24040033

RESUMO

BACKGROUND: Spermidine is a dietary polyamine that is able to activate protein tyrosine phosphatase non-receptor type 2 (PTPN2). As PTPN2 is known to be a negative regulator of interferon-gamma (IFN-γ)-induced responses, and IFN-γ stimulation of immune cells is a critical process in the immunopathology of inflammatory bowel disease (IBD), we wished to explore the potential of spermidine for reducing pro-inflammatory effects in vitro and in vivo. METHODS: Human THP-1 monocytes were treated with IFN-γ and/or spermidine. Protein expression and phosphorylation were analyzed by Western blot, cytokine expression by quantitative-PCR, and cytokine secretion by ELISA. Colitis was induced in mice by dextran sodium sulfate (DSS) administration. Disease severity was assessed by recording body weight, colonoscopy and histology. RESULTS: Spermidine increased expression and activity of PTPN2 in THP-1 monocytes and reduced IFN-γ-induced phosphorylation of signal transducer and activator of transcription (STAT) 1 and 3, as well as p38 mitogen-activated protein kinase (MAPK) in a PTPN2 dependent manner. Subsequently, IFN-γ-induced expression/secretion of intracellular cell adhesion molecule (ICAM)-1 mRNA, monocyte chemoattractant protein (MCP)-1, and interleukin (IL)-6 was reduced in spermidine-treated cells. The latter effects were absent in PTPN2-knockdown cells. In mice with DSS-induced colitis, spermidine treatment resulted in ameliorated weight loss and decreased mucosal damage indicating reduced disease severity. CONCLUSIONS: Activation of PTPN2 by spermidine ameliorates IFN-γ-induced inflammatory responses in THP-1 cells. Furthermore, spermidine treatment significantly reduces disease severity in mice with DSS-induced colitis; hence, spermidine supplementation and subsequent PTPN2 activation may be helpful in the treatment of chronic intestinal inflammation such as IBD.


Assuntos
Colite/prevenção & controle , Monócitos/efeitos dos fármacos , Proteína Tirosina Fosfatase não Receptora Tipo 2/metabolismo , Espermidina/farmacologia , Animais , Western Blotting , Linhagem Celular Tumoral , Quimiocina CCL2/genética , Quimiocina CCL2/metabolismo , Colite/induzido quimicamente , Colite/metabolismo , Sulfato de Dextrana , Ativação Enzimática/efeitos dos fármacos , Ensaio de Imunoadsorção Enzimática , Feminino , Humanos , Molécula 1 de Adesão Intercelular/genética , Molécula 1 de Adesão Intercelular/metabolismo , Interferon gama/farmacologia , Interleucina-6/genética , Interleucina-6/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Monócitos/metabolismo , Monócitos/patologia , Fosforilação/efeitos dos fármacos , Proteína Tirosina Fosfatase não Receptora Tipo 2/genética , Interferência de RNA , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fator de Transcrição STAT1/metabolismo , Fator de Transcrição STAT3/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
19.
Cell Host Microbe ; 14(3): 294-305, 2013 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-24034615

RESUMO

Cholera toxin (CT), a virulence factor elaborated by Vibrio cholerae, is sufficient to induce the severe diarrhea characteristic of cholera. The enzymatic moiety of CT (CtxA) increases cAMP synthesis in intestinal epithelial cells, leading to chloride ion (Cl(-)) efflux through the CFTR Cl(-) channel. To preserve electroneutrality and osmotic balance, sodium ions and water also flow into the intestinal lumen via a paracellular route. We find that CtxA-driven cAMP increase also inhibits Rab11/exocyst-mediated trafficking of host proteins including E-cadherin and Notch signaling components to cell-cell junctions in Drosophila, human intestinal epithelial cells, and ligated mouse ileal loops, thereby disrupting barrier function. Additionally, CtxA induces junctional damage, weight loss, and dye leakage in the Drosophila gut, contributing to lethality from live V. cholerae infection, all of which can be rescued by Rab11 overexpression. These barrier-disrupting effects of CtxA may act in parallel with Cl(-) secretion to drive the pathophysiology of cholera.


Assuntos
Toxina da Cólera/metabolismo , Células Epiteliais/fisiologia , Exossomos/efeitos dos fármacos , Interações Hospedeiro-Patógeno , Proteínas de Junções Íntimas/antagonistas & inibidores , Junções Íntimas/fisiologia , Vibrio cholerae/fisiologia , Animais , Linhagem Celular , Cloro/metabolismo , AMP Cíclico/metabolismo , Modelos Animais de Doenças , Drosophila , Células Epiteliais/efeitos dos fármacos , Proteínas de Ligação ao GTP/metabolismo , Humanos , Camundongos , Modelos Biológicos , Sódio/metabolismo , Análise de Sobrevida , Junções Íntimas/efeitos dos fármacos , Água/metabolismo
20.
Ann N Y Acad Sci ; 1257: 108-14, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22671596

RESUMO

Protein tyrosine phosphatase nonreceptor type 2 (PTPN2) has been identified as an inflammatory bowel disease (IBD) candidate gene. However, the mechanism through which mutations in the PTPN2 gene contribute to the pathogenesis of IBD has not been identified. PTPN2 acts as a negative regulator of signaling induced by the proinflammatory cytokine, interferon-gamma (IFN-γ). IFN-γ is known not only to play an important role in the pathogenesis of Crohn's disease (CD), but also to increase permeability of the intestinal epithelial barrier. We have shown that PTPN2 protects epithelial barrier function by restricting the capacity of IFN-γ to increase epithelial permeability and prevent induction of expression of the pore-forming protein, claudin-2. These data identify an important functional role for PTPN2 as a protector of the intestinal epithelial barrier and provide clues as to how PTPN2 mutations may contribute to the pathophysiology of CD.


Assuntos
Doença de Crohn/metabolismo , Citocinas/metabolismo , Células Epiteliais/metabolismo , Doenças Inflamatórias Intestinais/metabolismo , Mucosa Intestinal/metabolismo , Proteína Tirosina Fosfatase não Receptora Tipo 2/genética , Linhagem Celular , Doença de Crohn/patologia , Citocinas/fisiologia , Humanos , Doenças Inflamatórias Intestinais/patologia , Mucosa Intestinal/patologia , Mutação , Permeabilidade , Proteína Tirosina Fosfatase não Receptora Tipo 2/metabolismo , Transdução de Sinais , Regulação para Cima
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA