Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Infect Immun ; 90(10): e0009922, 2022 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-36069592

RESUMO

Coagulase-negative staphylococci (CoNS) are frequently commensal bacteria that rarely cause disease in mammals. Staphylococcus lugdunensis is an exceptional CoNS that causes disease in humans similar to virulent Staphylococcus aureus, but the factors that enhance the virulence of this bacterium remain ill defined. Here, we used random transposon insertion mutagenesis to identify the agr quorum sensing system as a regulator of hemolysins in S. lugdunensis. Using RNA sequencing (RNA-seq), we revealed that agr regulates dozens of genes, including hemolytic S. lugdunensis synergistic hemolysins (SLUSH) peptides and the protease lugdulysin. A murine bacteremia model was used to show that mice infected systemically with wild-type S. lugdunensis do not show overt signs of disease despite there being high numbers of bacteria in the livers and kidneys of mice. Moreover, proliferation of the agr mutant in these organs was no different from that of the wild-type strain, leaving the role of the SLUSH peptides and the metalloprotease lugdulysin in pathogenesis still unclear. Nonetheless, the tropism of S. lugdunensis for humans led us to investigate the role of virulence factors in other ways. We show that agr-regulated effectors, but not SLUSH or lugdulysin alone, are important for S. lugdunensis survival in whole human blood. Moreover, we demonstrate that Agr contributes to survival of S. lugdunensis during encounters with murine and primary human macrophages. These findings demonstrate that, in S. lugdunensis, Agr regulates expression of virulence factors and is required for resistance to host innate antimicrobial defenses. This study therefore provides insight into strategies that this Staphylococcus species uses to cause disease.


Assuntos
Infecções Estafilocócicas , Staphylococcus lugdunensis , Humanos , Camundongos , Animais , Staphylococcus lugdunensis/genética , Proteínas Hemolisinas/genética , Coagulase , Infecções Estafilocócicas/microbiologia , Fatores de Virulência/genética , Metaloproteases , Peptídeos , Imunidade Inata , Proteínas de Bactérias/genética , Mamíferos
2.
Proc Natl Acad Sci U S A ; 119(8)2022 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-35165181

RESUMO

Staphylococcus aureus is a foremost bacterial pathogen responsible for a vast array of human diseases. Staphylococcal superantigens (SAgs) constitute a family of exotoxins from S. aureus that bind directly to major histocompatibility complex (MHC) class II and T cell receptors to drive extensive T cell activation and cytokine release. Although these toxins have been implicated in serious disease, including toxic shock syndrome, the specific pathological mechanisms remain unclear. Herein, we aimed to elucidate how SAgs contribute to pathogenesis during bloodstream infections and utilized transgenic mice encoding human MHC class II to render mice susceptible to SAg activity. We demonstrate that SAgs contribute to S. aureus bacteremia by massively increasing bacterial burden in the liver, and this was mediated by CD4+ T cells that produced interferon gamma (IFN-γ) to high levels in a SAg-dependent manner. Bacterial burdens were reduced by blocking IFN-γ, phenocopying SAg-deletion mutant strains, and inhibiting a proinflammatory response. Infection kinetics and flow cytometry analyses suggested that this was a macrophage-driven mechanism, which was confirmed through macrophage-depletion experiments. Experiments in human cells demonstrated that excessive IFN-γ allowed S. aureus to replicate efficiently within macrophages. This indicates that SAgs promote bacterial survival by manipulating the immune response to inhibit effective clearing of S. aureus Altogether, this work implicates SAg toxins as critical therapeutic targets for preventing persistent or severe S. aureus disease.


Assuntos
Interferon gama/imunologia , Infecções Estafilocócicas/imunologia , Superantígenos/imunologia , Animais , Bacteriemia , Enterotoxinas/imunologia , Exotoxinas/imunologia , Antígenos de Histocompatibilidade Classe II/imunologia , Humanos , Interferon gama/metabolismo , Ativação Linfocitária/imunologia , Macrófagos/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Receptores de Antígenos de Linfócitos T/imunologia , Staphylococcus aureus/patogenicidade , Linfócitos T/imunologia , Fatores de Virulência/imunologia
3.
Nat Commun ; 11(1): 5018, 2020 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-33024089

RESUMO

The re-emergence of scarlet fever poses a new global public health threat. The capacity of North-East Asian serotype M12 (emm12) Streptococcus pyogenes (group A Streptococcus, GAS) to cause scarlet fever has been linked epidemiologically to the presence of novel prophages, including prophage ΦHKU.vir encoding the secreted superantigens SSA and SpeC and the DNase Spd1. Here, we report the molecular characterization of ΦHKU.vir-encoded exotoxins. We demonstrate that streptolysin O (SLO)-induced glutathione efflux from host cellular stores is a previously unappreciated GAS virulence mechanism that promotes SSA release and activity, representing the first description of a thiol-activated bacterial superantigen. Spd1 is required for resistance to neutrophil killing. Investigating single, double and triple isogenic knockout mutants of the ΦHKU.vir-encoded exotoxins, we find that SpeC and Spd1 act synergistically to facilitate nasopharyngeal colonization in a mouse model. These results offer insight into the pathogenesis of scarlet fever-causing GAS mediated by prophage ΦHKU.vir exotoxins.


Assuntos
Exotoxinas/metabolismo , Prófagos/genética , Streptococcus pyogenes/patogenicidade , Streptococcus pyogenes/virologia , Animais , Proteínas de Bactérias/farmacologia , Linhagem Celular , Eritrócitos/efeitos dos fármacos , Exotoxinas/genética , Feminino , Glutationa/metabolismo , Humanos , Masculino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Mutação , Faringe/citologia , Escarlatina/epidemiologia , Escarlatina/microbiologia , Streptococcus pyogenes/genética , Estreptolisinas/farmacologia , Superantígenos/genética , Superantígenos/metabolismo
4.
Proc Natl Acad Sci U S A ; 117(20): 10989-10999, 2020 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-32354997

RESUMO

Staphylococcus aureus infections can lead to diseases that range from localized skin abscess to life-threatening toxic shock syndrome. The SrrAB two-component system (TCS) is a global regulator of S. aureus virulence and critical for survival under environmental conditions such as hypoxic, oxidative, and nitrosative stress found at sites of infection. Despite the critical role of SrrAB in S. aureus pathogenicity, the mechanism by which the SrrAB TCS senses and responds to these environmental signals remains unknown. Bioinformatics analysis showed that the SrrB histidine kinase contains several domains, including an extracellular Cache domain and a cytoplasmic HAMP-PAS-DHp-CA region. Here, we show that the PAS domain regulates both kinase and phosphatase enzyme activity of SrrB and present the structure of the DHp-CA catalytic core. Importantly, this structure shows a unique intramolecular cysteine disulfide bond in the ATP-binding domain that significantly affects autophosphorylation kinetics. In vitro data show that the redox state of the disulfide bond affects S. aureus biofilm formation and toxic shock syndrome toxin-1 production. Moreover, with the use of the rabbit infective endocarditis model, we demonstrate that the disulfide bond is a critical regulatory element of SrrB function during S. aureus infection. Our data support a model whereby the disulfide bond and PAS domain of SrrB sense and respond to the cellular redox environment to regulate S. aureus survival and pathogenesis.


Assuntos
Proteínas de Bactérias/metabolismo , Cisteína/metabolismo , Proteínas Repressoras/metabolismo , Staphylococcus aureus/metabolismo , Animais , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Toxinas Bacterianas , Sequência de Bases , Biofilmes , Domínio Catalítico , Modelos Animais de Doenças , Endocardite , Enterotoxinas , Feminino , Regulação Bacteriana da Expressão Gênica , Histidina Quinase/metabolismo , Masculino , Modelos Moleculares , Mutação , Oxirredução , Domínios Proteicos , Coelhos , Proteínas Repressoras/química , Proteínas Repressoras/genética , Sepse , Infecções Estafilocócicas/metabolismo , Staphylococcus aureus/genética , Staphylococcus aureus/patogenicidade , Superantígenos , Thermotoga maritima , Virulência/genética , Virulência/fisiologia
5.
Proc Natl Acad Sci U S A ; 116(51): 25923-25931, 2019 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-31772015

RESUMO

Streptococcal toxic shock syndrome (STSS) is a rapidly progressing, life-threatening, systemic reaction to invasive infection caused by group A streptococci (GAS). GAS superantigens are key mediators of STSS through their potent activation of T cells leading to a cytokine storm and consequently vascular leakage, shock, and multiorgan failure. Mucosal-associated invariant T (MAIT) cells recognize MR1-presented antigens derived from microbial riboflavin biosynthesis and mount protective innate-like immune responses against the microbes producing such metabolites. GAS lack de novo riboflavin synthesis, and the role of MAIT cells in STSS has therefore so far been overlooked. Here we have conducted a comprehensive analysis of human MAIT cell responses to GAS, aiming to understand the contribution of MAIT cells to the pathogenesis of STSS. We show that MAIT cells are strongly activated and represent the major T cell source of IFNγ and TNF in the early stages of response to GAS. MAIT cell activation is biphasic with a rapid TCR Vß2-specific, TNF-dominated response to superantigens and a later IL-12- and IL-18-dependent, IFNγ-dominated response to both bacterial cells and secreted factors. Depletion of MAIT cells from PBMC resulted in decreased total production of IFNγ, IL-1ß, IL-2, and TNFß. Peripheral blood MAIT cells in patients with STSS expressed elevated levels of the activation markers CD69, CD25, CD38, and HLA-DR during the acute compared with the convalescent phase. Our data demonstrate that MAIT cells are major contributors to the early cytokine response to GAS, and are therefore likely to contribute to the pathological cytokine storm underlying STSS.


Assuntos
Citocinas/metabolismo , Células T Invariantes Associadas à Mucosa/imunologia , Choque Séptico/imunologia , Infecções Estreptocócicas/imunologia , Streptococcus pyogenes/imunologia , Adulto , Idoso , Citocinas/sangue , Antígenos HLA-DR/metabolismo , Humanos , Interferon gama/metabolismo , Interleucina-12/metabolismo , Interleucina-18/metabolismo , Interleucina-1alfa/metabolismo , Interleucina-2/metabolismo , Linfotoxina-alfa/metabolismo , Pessoa de Meia-Idade , Receptores de Antígenos de Linfócitos T alfa-beta/metabolismo , Riboflavina/biossíntese , Streptococcus pyogenes/patogenicidade , Superantígenos/metabolismo
6.
PLoS Biol ; 15(6): e2001930, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28632753

RESUMO

Superantigens (SAgs) are potent exotoxins secreted by Staphylococcus aureus and Streptococcus pyogenes. They target a large fraction of T cell pools to set in motion a "cytokine storm" with severe and sometimes life-threatening consequences typically encountered in toxic shock syndrome (TSS). Given the rapidity with which TSS develops, designing timely and truly targeted therapies for this syndrome requires identification of key mediators of the cytokine storm's initial wave. Equally important, early host responses to SAgs can be accompanied or followed by a state of immunosuppression, which in turn jeopardizes the host's ability to combat and clear infections. Unlike in mouse models, the mechanisms underlying SAg-associated immunosuppression in humans are ill-defined. In this work, we have identified a population of innate-like T cells, called mucosa-associated invariant T (MAIT) cells, as the most powerful source of pro-inflammatory cytokines after exposure to SAgs. We have utilized primary human peripheral blood and hepatic mononuclear cells, mouse MAIT hybridoma lines, HLA-DR4-transgenic mice, MAIThighHLA-DR4+ bone marrow chimeras, and humanized NOD-scid IL-2Rγnull mice to demonstrate for the first time that: i) mouse and human MAIT cells are hyperresponsive to SAgs, typified by staphylococcal enterotoxin B (SEB); ii) the human MAIT cell response to SEB is rapid and far greater in magnitude than that launched by unfractionated conventional T, invariant natural killer T (iNKT) or γδ T cells, and is characterized by production of interferon (IFN)-γ, tumor necrosis factor (TNF)-α and interleukin (IL)-2, but not IL-17A; iii) high-affinity MHC class II interaction with SAgs, but not MHC-related protein 1 (MR1) participation, is required for MAIT cell activation; iv) MAIT cell responses to SEB can occur in a T cell receptor (TCR) Vß-specific manner but are largely contributed by IL-12 and IL-18; v) as MAIT cells are primed by SAgs, they also begin to develop a molecular signature consistent with exhaustion and failure to participate in antimicrobial defense. Accordingly, they upregulate lymphocyte-activation gene 3 (LAG-3), T cell immunoglobulin and mucin-3 (TIM-3), and/or programmed cell death-1 (PD-1), and acquire an anergic phenotype that interferes with their cognate function against Klebsiella pneumoniae and Escherichia coli; vi) MAIT cell hyperactivation and anergy co-utilize a signaling pathway that is governed by p38 and MEK1/2. Collectively, our findings demonstrate a pathogenic, rather than protective, role for MAIT cells during infection. Furthermore, we propose a novel mechanism of SAg-associated immunosuppression in humans. MAIT cells may therefore provide an attractive therapeutic target for the management of both early and late phases of severe SAg-mediated illnesses.


Assuntos
Antígenos de Bactérias/toxicidade , Anergia Clonal , Modelos Imunológicos , Células T Invariantes Associadas à Mucosa/imunologia , Staphylococcus aureus/imunologia , Streptococcus pyogenes/imunologia , Superantígenos/toxicidade , Animais , Antígenos de Bactérias/metabolismo , Células da Medula Óssea/citologia , Células da Medula Óssea/efeitos dos fármacos , Células da Medula Óssea/imunologia , Células da Medula Óssea/metabolismo , Linhagem Celular , Células Cultivadas , Anergia Clonal/efeitos dos fármacos , Cruzamentos Genéticos , Enterotoxinas/metabolismo , Enterotoxinas/toxicidade , Feminino , Humanos , Hibridomas , Imunidade Inata , Leucócitos Mononucleares/citologia , Leucócitos Mononucleares/efeitos dos fármacos , Leucócitos Mononucleares/imunologia , Leucócitos Mononucleares/metabolismo , Ativação Linfocitária/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos NOD , Camundongos Knockout , Camundongos SCID , Camundongos Transgênicos , Células T Invariantes Associadas à Mucosa/citologia , Células T Invariantes Associadas à Mucosa/efeitos dos fármacos , Células T Invariantes Associadas à Mucosa/metabolismo , Organismos Livres de Patógenos Específicos , Staphylococcus aureus/metabolismo , Streptococcus pyogenes/metabolismo , Superantígenos/metabolismo , Quimeras de Transplante/sangue , Quimeras de Transplante/imunologia , Quimeras de Transplante/metabolismo
7.
Sci Rep ; 6: 36233, 2016 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-27808235

RESUMO

Streptococcus pyogenes is a globally prominent bacterial pathogen that exhibits strict tropism for the human host, yet bacterial factors responsible for the ability of S. pyogenes to compete within this limited biological niche are not well understood. Using an engineered recombinase-based in vivo expression technology (RIVET) system, we identified an in vivo-induced promoter region upstream of a predicted Class IIb bacteriocin system in the M18 serotype S. pyogenes strain MGAS8232. This promoter element was not active under in vitro laboratory conditions, but was highly induced within the mouse nasopharynx. Recombinant expression of the predicted mature S. pyogenes bacteriocin peptides (designated SpbM and SpbN) revealed that both peptides were required for antimicrobial activity. Using a gain of function experiment in Lactococcus lactis, we further demonstrated S. pyogenes immunity function is encoded downstream of spbN. These data highlight the importance of bacterial gene regulation within appropriate environments to help understand mechanisms of niche adaptation by bacterial pathogens.


Assuntos
Bacteriocinas/genética , Regulação Bacteriana da Expressão Gênica , Recombinases/genética , Streptococcus pyogenes/genética , Sequência de Aminoácidos , Animais , Bacteriocinas/metabolismo , Sequência de Bases , Humanos , Lactococcus lactis/genética , Lactococcus lactis/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Doenças Nasofaríngeas/microbiologia , Peptídeos/genética , Peptídeos/metabolismo , Regiões Promotoras Genéticas/genética , Recombinases/metabolismo , Infecções Estreptocócicas/microbiologia , Streptococcus pyogenes/metabolismo
8.
FASEB J ; 29(2): 711-23, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25416549

RESUMO

Staphylococcus aureus is a major component of the skin microbiota and causes a large number of serious infections. S. aureus first interacts with epidermal keratinocytes to breach the epidermal barrier through mechanisms not fully understood. By use of primary keratinocytes from mice with epidermis-restricted Ilk gene inactivation and control integrin-linked kinase (ILK)-expressing littermates, we investigated the role of ILK in epidermal S. aureus invasion. Heat-killed, but not live, bacteria were internalized to Rab5- and Rab7-positive phagosomes, and incubation with keratinocyte growth factor increased their uptake 2.5-fold. ILK-deficient mouse keratinocytes internalized bacteria 2- to 4-fold less efficiently than normal cells. The reduced invasion by live S. aureus of ILK-deficient cells was restored in the presence of exogenous, constitutively active Rac1. Thus, Rac1 functions downstream from ILK during invasion. Further, invasion by S. aureus of Rac1-deficient cells was 2.5-fold lower than in normal cells. Paradoxically, staphylococcal cutaneous penetration of mouse skin explants with ILK-deficient epidermis was 35-fold higher than that of normal skin, indicating defects in epidermal barrier function in the absence of ILK. Thus, we identified an ILK-Rac1 pathway essential for bacterial invasion of keratinocytes, and established ILK as a key contributor to prevent invasive staphylococcal cutaneous infection.


Assuntos
Queratinócitos/microbiologia , Neuropeptídeos/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Staphylococcus aureus/patogenicidade , Proteínas rac1 de Ligação ao GTP/metabolismo , Animais , Separação Celular , Epiderme/metabolismo , Fator 7 de Crescimento de Fibroblastos/metabolismo , Citometria de Fluxo , Gentamicinas/química , Humanos , Queratinócitos/citologia , Queratinócitos/metabolismo , Camundongos , Microbiota , Microscopia de Fluorescência , Fagocitose , Proteínas Recombinantes/metabolismo , Pele/microbiologia , Infecções Estafilocócicas/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Proteínas rab de Ligação ao GTP/metabolismo , Proteínas rab5 de Ligação ao GTP/metabolismo , proteínas de unión al GTP Rab7
9.
Can J Cardiol ; 30(12): 1732.e5-8, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25475479

RESUMO

In this report we describe a previously healthy 36-year-old man who presented with septic shock secondary to bacterial endocarditis with multiple cerebral, mesenteric, and peripheral embolic phenomena. He underwent emergent porcine prosthetic valve replacement with aortic annular reconstruction. Subsequently, he developed recalcitrant Candida parapsilosis endocarditis requiring treatment with multiple antifungal agents and 4 repeated complex reconstructions of the aortic root and fibrous trigones over 3 years, before the infection was successfully controlled. This case underscores the significant morbidity associated with fungal endocarditis and importance of an early combined medical and surgical approach.


Assuntos
Valva Aórtica/cirurgia , Procedimentos Cirúrgicos Cardíacos/métodos , Endocardite Bacteriana/diagnóstico , Próteses Valvulares Cardíacas/efeitos adversos , Infecções Relacionadas à Prótese/diagnóstico , Infecções Estafilocócicas/diagnóstico , Staphylococcus aureus/isolamento & purificação , Adulto , Valva Aórtica/diagnóstico por imagem , Valva Aórtica/microbiologia , Ecocardiografia Transesofagiana , Endocardite Bacteriana/cirurgia , Humanos , Masculino , Infecções Relacionadas à Prótese/cirurgia , Reoperação , Infecções Estafilocócicas/cirurgia , Tomografia Computadorizada por Raios X
10.
PLoS One ; 9(4): e95200, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24736661

RESUMO

Superantigens (SAgs) are microbial toxins that cross-link T cell receptors with major histocompatibility class II (MHC-II) molecules leading to the activation of large numbers of T cells. Herein, we describe the development and preclinical testing of a novel tumor-targeted SAg (TTS) therapeutic built using the streptococcal pyrogenic exotoxin C (SpeC) SAg and targeting cancer cells expressing the 5T4 tumor-associated antigen (TAA). To inhibit potentially harmful widespread immune cell activation, a SpeC mutation within the high-affinity MHC-II binding interface was generated (SpeCD203A) that demonstrated a pronounced reduction in mitogenic activity, yet this mutant could still induce immune cell-mediated cancer cell death in vitro. To target 5T4+ cancer cells, we engineered a humanized single chain variable fragment (scFv) antibody to recognize 5T4 (scFv5T4). Specific targeting of scFv5T4 was verified. SpeCD203A fused to scFv5T4 maintained the ability to activate and induce immune cell-mediated cytotoxicity of colorectal cancer cells. Using a xenograft model of established human colon cancer, we demonstrated that the SpeC-based TTS was able to control the growth and spread of large tumors in vivo. This required both TAA targeting by scFv5T4 and functional SAg activity. These studies lay the foundation for the development of streptococcal SAgs as 'next-generation' TTSs for cancer immunotherapy.


Assuntos
Anticorpos Monoclonais Humanizados/imunologia , Antígenos de Neoplasias/imunologia , Neoplasias do Colo/patologia , Imunoterapia/métodos , Proteínas Recombinantes de Fusão/imunologia , Streptococcus/imunologia , Superantígenos/imunologia , Animais , Anticorpos Monoclonais Humanizados/genética , Linhagem Celular Tumoral , Proliferação de Células , Transformação Celular Neoplásica , Neoplasias do Colo/imunologia , Neoplasias do Colo/terapia , Humanos , Camundongos , Modelos Moleculares , Conformação Proteica , Receptores de Antígenos de Linfócitos T/química , Receptores de Antígenos de Linfócitos T/metabolismo , Proteínas Recombinantes de Fusão/genética , Anticorpos de Cadeia Única/genética , Anticorpos de Cadeia Única/imunologia , Superantígenos/genética , Linfócitos T/citologia , Linfócitos T/imunologia , Linfócitos T/metabolismo
11.
CMAJ Open ; 2(4): E352-9, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25553328

RESUMO

INTRODUCTION: Staphylococcus aureus bacteremia is associated with significant morbidity and mortality. Given the paucity of recent Canadian data, we estimated the mortality rate associated with S. aureus bacteremia in a tertiary care hospital and identified risk factors associated with mortality. METHODS: We retrospectively reviewed the records of adults with S. aureus bacteremia admitted to a tertiary care centre in southwestern Ontario between 2008 and 2012. Cox regression analysis was used to evaluate associations between predictor variables and all-cause, in-hospital, and 90-day postdischarge mortality. RESULTS: Of the 925 patients involved in the study, 196 (21.2%) died in hospital and 62 (6.7%) died within 90 days after discharge. Risk factors associated with in-hospital and all-cause mortality included age, sepsis (adjusted hazard ratio [adjusted HR] 1.49, 95% confidence interval [CI] 1.08-2.06, p = 0.02), admission to the intensive care unit (adjusted HR 3.78, 95% CI 2.85-5.02, p < 0.0001), hepatic failure (adjusted HR 3.36, 95% CI 1.91-5.90, p < 0.0001) and metastatic cancer (adjusted HR 2.58, 95% CI 1.77-3.75, p < 0.0001). Methicillin resistance, hepatic failure, cerebrovascular disease, chronic obstructive pulmonary disease and metastatic cancer were associated with postdischarge mortality. INTERPRETATION: The all-cause mortality rate in our cohort was 27.9%. Identification of predictors of mortality may guide empiric therapy and provide prognostic clarity for patients with S. aureus bacteremia.

12.
Immunity ; 25(1): 67-78, 2006 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-16860758

RESUMO

The paradigm to explain antigen-dependent T cell receptor (TCR) signaling is based on the activation of the CD4 or CD8 coreceptor-associated kinase Lck. It is widely assumed that this paradigm is also applicable to signaling by bacterial superantigens. However, these bacterial toxins can activate human T cells lacking Lck, suggesting the existence of an additional pathway of TCR signaling. Here we showed that this alternative pathway operates in the absence of Lck-dependent tyrosine-phosphorylation events and was initiated by the TCR-dependent activation of raft-enriched heterotrimeric Galpha11 proteins. This event, in turn, activated a phospholipase C-beta and protein kinase C-mediated cascade that turned on the mitogen-activated protein kinases ERK-1 and ERK-2, triggered Ca(2+) influx, and translocated the transcription factors NF-AT and NF-kappaB to the nucleus, ultimately inducing the production of interleukin-2 in Lck-deficient T cells. The triggering of this alternative pathway by superantigens suggests that these toxins use a G protein-coupled receptor as a coreceptor on T cells.


Assuntos
Antígenos de Bactérias/imunologia , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/metabolismo , Isoenzimas/metabolismo , Receptores de Antígenos de Linfócitos T/imunologia , Receptores de Antígenos de Linfócitos T/metabolismo , Transdução de Sinais , Superantígenos/imunologia , Fosfolipases Tipo C/metabolismo , Antígenos CD4/imunologia , Cálcio/metabolismo , Células Cultivadas , Enterotoxinas/imunologia , Ativação Enzimática , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/genética , Humanos , Interleucina-2/biossíntese , Isoenzimas/genética , Ativação Linfocitária/imunologia , Proteína Tirosina Quinase p56(lck) Linfócito-Específica/genética , Proteína Tirosina Quinase p56(lck) Linfócito-Específica/metabolismo , Fosfolipase C beta , Fosfosserina/metabolismo , Proteína Quinase C/metabolismo , Fosfolipases Tipo C/genética
13.
J Infect Dis ; 188(8): 1142-5, 2003 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-14551884

RESUMO

Toxic shock syndrome (TSS) may be mediated by superantigen-activated T cells, a theory we tested in rabbits, which are more susceptible to the lethal effects of superantigens, such as TSS toxin-1 (TSST-1), than are mice. Rabbits exposed to 10 cGy of total body irradiation exhibited T cell deficiency, with profound depletion of splenic lymphocytes and circulating CD4(+) lymphocytes, as well as an inability to manifest delayed-type hypersensitivity. Nevertheless, these rabbits remained completely susceptible to TSST-1, indicating that TSS can occur in the setting of marked immunosuppression.


Assuntos
Toxinas Bacterianas , Ciclosporina/farmacologia , Enterotoxinas/efeitos da radiação , Enterotoxinas/toxicidade , Imunossupressores/farmacologia , Choque Séptico/mortalidade , Irradiação Corporal Total , Animais , Feminino , Terapia de Imunossupressão , Camundongos , Camundongos Endogâmicos BALB C , Coelhos , Choque Séptico/imunologia , Choque Séptico/microbiologia , Infecções Estafilocócicas/imunologia , Infecções Estafilocócicas/microbiologia , Infecções Estafilocócicas/mortalidade , Staphylococcus aureus/metabolismo , Staphylococcus aureus/patogenicidade , Superantígenos/efeitos da radiação , Superantígenos/toxicidade , Linfócitos T
14.
Clin Microbiol Rev ; 16(4): 658-72, 2003 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-14557292

RESUMO

Probiotics are defined as live microorganisms that, when administered in adequate amounts, confer a health benefit on the host. There is now mounting evidence that selected probiotic strains can provide health benefits to their human hosts. Numerous clinical trials show that certain strains can improve the outcome of intestinal infections by reducing the duration of diarrhea. Further investigations have shown benefits in reducing the recurrence of urogenital infections in women, while promising studies in cancer and allergies require research into the mechanisms of activity for particular strains and better-designed trials. At present, only a small percentage of physicians either know of probiotics or understand their potential applicability to patient care. Thus, probiotics are not yet part of the clinical arsenal for prevention and treatment of disease or maintenance of health. The establishment of accepted standards and guidelines, proposed by the Food and Agriculture Organization of the United Nations and the World Health Organization, represents a key step in ensuring that reliable products with suitable, informative health claims become available. Based upon the evidence to date, future advances with single- and multiple-strain therapies are on the horizon for the management of a number of debilitating and even fatal conditions.


Assuntos
Gastroenteropatias/prevenção & controle , Infecções/terapia , Lactobacillus , Probióticos/uso terapêutico , Adulto , Pré-Escolar , Ensaios Clínicos como Assunto , Diarreia/etiologia , Diarreia/terapia , Feminino , Gastroenteropatias/etiologia , Gastroenteropatias/terapia , Humanos , Lactente , Infecções/etiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA