Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Cell Stem Cell ; 2024 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-39181129

RESUMO

While all eukaryotic cells are dependent on mitochondria for function, in a complex tissue, which cell type and which cell behavior are more sensitive to mitochondrial deficiency remain unpredictable. Here, we show that in the mouse airway, compromising mitochondrial function by inactivating mitochondrial protease gene Lonp1 led to reduced progenitor proliferation and differentiation during development, apoptosis of terminally differentiated ciliated cells and their replacement by basal progenitors and goblet cells during homeostasis, and failed airway progenitor migration into damaged alveoli following influenza infection. ATF4 and the integrated stress response (ISR) pathway are elevated and responsible for the airway phenotypes. Such context-dependent sensitivities are predicted by the selective expression of Bok, which is required for ISR activation. Reduced LONP1 expression is found in chronic obstructive pulmonary disease (COPD) airways with squamous metaplasia. These findings illustrate a cellular energy landscape whereby compromised mitochondrial function could favor the emergence of pathological cell types.

2.
Am J Physiol Lung Cell Mol Physiol ; 323(1): L1-L13, 2022 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-35503238

RESUMO

Over the past decade, clinicians have increasingly prescribed acetaminophen (APAP) for patients in the neonatal intensive care unit (NICU). Acetaminophen has been shown to reduce postoperative opiate burden, and may provide similar efficacy for closure of the patent ductus arteriosus (PDA) as nonsteroidal anti-inflammatory drugs (NSAIDs). Despite these potential benefits, APAP exposures have spread to increasingly less mature infants, a highly vulnerable population for whom robust pharmacokinetic and pharmacodynamic data for APAP are lacking. Concerningly, preclinical studies suggest that perinatal APAP exposures may result in unanticipated adverse effects that are unique to the developing lung. In this review, we discuss the clinical observations linking APAP exposures to adverse respiratory outcomes and the preclinical data demonstrating a developmental susceptibility to APAP-induced lung injury. We show how clinical observations linking perinatal APAP exposures to pulmonary injury have been taken to the bench to produce important insights into the potential mechanisms underlying these findings. We argue that the available data support a more cautious approach to APAP use in the NICU until large randomized controlled trials provide appropriate safety and efficacy data.


Assuntos
Acetaminofen , Permeabilidade do Canal Arterial , Acetaminofen/efeitos adversos , Anti-Inflamatórios não Esteroides , Permeabilidade do Canal Arterial/induzido quimicamente , Permeabilidade do Canal Arterial/tratamento farmacológico , Feminino , Humanos , Recém-Nascido , Unidades de Terapia Intensiva Neonatal , Pulmão , Gravidez
3.
Am J Hum Genet ; 108(10): 1964-1980, 2021 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-34547244

RESUMO

Congenital diaphragmatic hernia (CDH) is a severe congenital anomaly that is often accompanied by other anomalies. Although the role of genetics in the pathogenesis of CDH has been established, only a small number of disease-associated genes have been identified. To further investigate the genetics of CDH, we analyzed de novo coding variants in 827 proband-parent trios and confirmed an overall significant enrichment of damaging de novo variants, especially in constrained genes. We identified LONP1 (lon peptidase 1, mitochondrial) and ALYREF (Aly/REF export factor) as candidate CDH-associated genes on the basis of de novo variants at a false discovery rate below 0.05. We also performed ultra-rare variant association analyses in 748 affected individuals and 11,220 ancestry-matched population control individuals and identified LONP1 as a risk gene contributing to CDH through both de novo and ultra-rare inherited largely heterozygous variants clustered in the core of the domains and segregating with CDH in affected familial individuals. Approximately 3% of our CDH cohort who are heterozygous with ultra-rare predicted damaging variants in LONP1 have a range of clinical phenotypes, including other anomalies in some individuals and higher mortality and requirement for extracorporeal membrane oxygenation. Mice with lung epithelium-specific deletion of Lonp1 die immediately after birth, most likely because of the observed severe reduction of lung growth, a known contributor to the high mortality in humans. Our findings of both de novo and inherited rare variants in the same gene may have implications in the design and analysis for other genetic studies of congenital anomalies.


Assuntos
Proteases Dependentes de ATP/genética , Proteases Dependentes de ATP/fisiologia , Anormalidades Craniofaciais/genética , Variações do Número de Cópias de DNA , Anormalidades do Olho/genética , Transtornos do Crescimento/genética , Hérnias Diafragmáticas Congênitas/genética , Luxação Congênita de Quadril/genética , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/fisiologia , Mutação de Sentido Incorreto , Osteocondrodisplasias/genética , Anormalidades Dentárias/genética , Animais , Estudos de Casos e Controles , Estudos de Coortes , Anormalidades Craniofaciais/patologia , Anormalidades do Olho/patologia , Feminino , Transtornos do Crescimento/patologia , Hérnias Diafragmáticas Congênitas/patologia , Luxação Congênita de Quadril/patologia , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Osteocondrodisplasias/patologia , Linhagem , Anormalidades Dentárias/patologia
4.
Respir Care ; 66(1): 41-49, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32753531

RESUMO

BACKGROUND: Congenital diaphragmatic hernia is associated with a high risk of neonatal mortality and long-term morbidity due to lung hypoplasia, pulmonary hypertension, and prolonged exposure to positive-pressure ventilation. Ventilator-associated lung injury may be reduced by using approaches that facilitate the transition from invasive ventilation to noninvasive ventilation (NIV), such as with neurally-adjusted ventilatory assist (NAVA). We reported our use of NAVA in neonatal patients with congenital diaphragmatic hernia during the transition from invasive ventilation to NIV. METHODS: A retrospective analysis of neonatal subjects with congenital diaphragmatic hernia admitted to a tertiary care children's hospital between December 2015 and May 2018 was conducted. Subject data and factors that affected the use of NAVA were analyzed. RESULTS: Ten neonatal subjects with congenital diaphragmatic hernia were placed on NAVA, and 6 were successfully transitioned, after surgery, from pressure control synchronized intermittent mandatory ventilation to invasive ventilation with NAVA and then to NIV with NAVA without the need for re-intubation. The transition from pressure control synchronized intermittent mandatory ventilation to invasive ventilation with NAVA resulted in a decrease in peak inspiratory pressure, mean airway pressure, and [Formula: see text]. Barriers to the use of NAVA included symptomatic pleural effusion or chylothorax and pulmonary sequestration. CONCLUSIONS: Both invasive ventilation with NAVA and NIV with NAVA were used successfully in subjects with congenital diaphragmatic hernia during the transition from invasive ventilation to NIV. The transition to NAVA was associated with a decrease in peak inspiratory pressure, mean airway pressure, and the need for supplemental oxygen. A prospective trial is needed to determine the short- and long-term impacts of this mode of ventilation in neonates with congenital diaphragmatic hernia.


Assuntos
Hérnias Diafragmáticas Congênitas , Suporte Ventilatório Interativo , Extubação , Criança , Hérnias Diafragmáticas Congênitas/terapia , Humanos , Recém-Nascido , Estudos Prospectivos , Estudos Retrospectivos
5.
J Clin Invest ; 128(2): 655-667, 2018 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-29251627

RESUMO

A critical event in the adaptation to extrauterine life is relaxation of the pulmonary vasculature at birth, allowing for a rapid increase in pulmonary blood flow that is essential for efficient gas exchange. Failure of this transition leads to pulmonary hypertension (PH), a major cause of newborn mortality associated with preterm birth, infection, hypoxia, and malformations including congenital diaphragmatic hernia (CDH). While individual vasoconstrictor and dilator genes have been identified, the coordination of their expression is not well understood. Here, we found that lung mesenchyme-specific deletion of CDH-implicated genes encoding pre-B cell leukemia transcription factors (Pbx) led to lethal PH in mice shortly after birth. Loss of Pbx genes resulted in the misexpression of both vasoconstrictors and vasodilators in multiple pathways that converge to increase phosphorylation of myosin in vascular smooth muscle (VSM) cells, causing persistent constriction. While targeting endothelin and angiotensin, which are upstream regulators that promote VSM contraction, was not effective, treatment with the Rho-kinase inhibitor Y-27632 reduced vessel constriction and PH in Pbx-mutant mice. These results demonstrate a lung-intrinsic, herniation-independent cause of PH in CDH. More broadly, our findings indicate that neonatal PH can result from perturbation of multiple pathways and suggest that targeting the downstream common effectors may be a more effective treatment for neonatal PH.


Assuntos
Hérnias Diafragmáticas Congênitas/etiologia , Proteínas de Homeodomínio/metabolismo , Pulmão/embriologia , Fator de Transcrição 1 de Leucemia de Células Pré-B/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Alelos , Animais , Apoptose , Proliferação de Células , Modelos Animais de Doenças , Ecocardiografia , Elastina/metabolismo , Feminino , Deleção de Genes , Hipertensão Pulmonar/etiologia , Pulmão/irrigação sanguínea , Camundongos , Camundongos Knockout , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/metabolismo , Miosinas/metabolismo , Parto , Fosforilação , Artéria Pulmonar/metabolismo , Respiração , Vasoconstrição/fisiologia
6.
Development ; 143(5): 774-9, 2016 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-26811383

RESUMO

Congenital heart defects are the most common birth defects in humans, and those that affect the proper alignment of the outflow tracts and septation of the ventricles are a highly significant cause of morbidity and mortality in infants. A late differentiating population of cardiac progenitors, referred to as the anterior second heart field (AHF), gives rise to the outflow tract and the majority of the right ventricle and provides an embryological context for understanding cardiac outflow tract alignment and membranous ventricular septal defects. However, the transcriptional pathways controlling AHF development and their roles in congenital heart defects remain incompletely elucidated. Here, we inactivated the gene encoding the transcription factor MEF2C in the AHF in mice. Loss of Mef2c function in the AHF results in a spectrum of outflow tract alignment defects ranging from overriding aorta to double-outlet right ventricle and dextro-transposition of the great arteries. We identify Tdgf1, which encodes a Nodal co-receptor (also known as Cripto), as a direct transcriptional target of MEF2C in the outflow tract via an AHF-restricted Tdgf1 enhancer. Importantly, both the MEF2C and TDGF1 genes are associated with congenital heart defects in humans. Thus, these studies establish a direct transcriptional pathway between the core cardiac transcription factor MEF2C and the human congenital heart disease gene TDGF1. Moreover, we found a range of outflow tract alignment defects resulting from a single genetic lesion, supporting the idea that AHF-derived outflow tract alignment defects may constitute an embryological spectrum rather than distinct anomalies.


Assuntos
Fator de Crescimento Epidérmico/fisiologia , Regulação da Expressão Gênica no Desenvolvimento , Glicoproteínas de Membrana/fisiologia , Proteínas de Neoplasias/fisiologia , Animais , Animais Recém-Nascidos , Modelos Animais de Doenças , Fator de Crescimento Epidérmico/genética , Feminino , Deleção de Genes , Coração/embriologia , Cardiopatias Congênitas/genética , Comunicação Interventricular/genética , Ventrículos do Coração , Humanos , Hibridização In Situ , Fatores de Transcrição MEF2/genética , Fatores de Transcrição MEF2/fisiologia , Masculino , Glicoproteínas de Membrana/genética , Camundongos , Morfogênese/genética , Proteínas de Neoplasias/genética , Organogênese , Análise de Sequência de RNA , Distribuição Tecidual , Transcrição Gênica , Transposição dos Grandes Vasos/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA