Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Am J Respir Crit Care Med ; 206(9): 1128-1139, 2022 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-35771569

RESUMO

Rationale: Treatment options for idiopathic pulmonary fibrosis (IPF) are limited. Objectives: To evaluate the efficacy and safety of BG00011, an anti-αvß6 IgG1 monoclonal antibody, in the treatment of patients with IPF. Methods: In a phase IIb randomized, double-blind, placebo-controlled trial, patients with IPF (FVC ⩾50% predicted, on or off background therapy) were randomized 1:1 to once-weekly subcutaneous BG00011 56 mg or placebo. The primary endpoint was FVC change from baseline at Week 52. Because of early trial termination (imbalance in adverse events and lack of clinical benefit), endpoints were evaluated at Week 26 as an exploratory analysis. Measurements and Main Results: One hundred six patients were randomized and received at least one dose of BG00011 (n = 54) or placebo (n = 52). At Week 26, there was no significant difference in FVC change from baseline between patients who received BG00011 (n = 20) or placebo (n = 23), least squares mean (SE) -0.097 L (0.0600) versus -0.056 L (0.0593), respectively (P = 0.268). However, after Week 26, patients in the BG00011 group showed a worsening trend. Eight (44.4%) of 18 who received BG00011 and 4 (18.2%) of 22 who received placebo showed worsening of fibrosis on high-resolution computed tomography at the end of treatment. IPF exacerbation/or progression was reported in 13 patients (all in the BG00011 group). Serious adverse events occurred more frequently in BG00011 patients, including four deaths. Conclusions: The results do not support the continued clinical development of BG00011. Further research is warranted to identify new treatment strategies that modify inflammatory and fibrotic pathways in IPF. Clinical trial registered with www.clinicaltrials.gov (NCT03573505).


Assuntos
Fibrose Pulmonar Idiopática , Humanos , Fibrose Pulmonar Idiopática/tratamento farmacológico , Anticorpos Monoclonais/uso terapêutico , Resultado do Tratamento , Método Duplo-Cego , Imunoglobulina G
2.
J Clin Invest ; 126(7): 2561-74, 2016 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-27270170

RESUMO

Preeclampsia is a hypertensive disorder of pregnancy in which patients develop profound sensitivity to vasopressors, such as angiotensin II, and is associated with substantial morbidity for the mother and fetus. Enhanced vasoconstrictor sensitivity and elevations in soluble fms-like tyrosine kinase 1 (sFLT1), a circulating antiangiogenic protein, precede clinical signs and symptoms of preeclampsia. Here, we report that overexpression of sFlt1 in pregnant mice induced angiotensin II sensitivity and hypertension by impairing endothelial nitric oxide synthase (eNOS) phosphorylation and promoting oxidative stress in the vasculature. Administration of the NOS inhibitor l-NAME to pregnant mice recapitulated the angiotensin sensitivity and oxidative stress observed with sFlt1 overexpression. Sildenafil, an FDA-approved phosphodiesterase 5 inhibitor that enhances NO signaling, reversed sFlt1-induced hypertension and angiotensin II sensitivity in the preeclampsia mouse model. Sildenafil treatment also improved uterine blood flow, decreased uterine vascular resistance, and improved fetal weights in comparison with untreated sFlt1-expressing mice. Finally, sFLT1 protein expression inversely correlated with reductions in eNOS phosphorylation in placental tissue of human preeclampsia patients. These data support the concept that endothelial dysfunction due to high circulating sFLT1 may be the primary event leading to enhanced vasoconstrictor sensitivity that is characteristic of preeclampsia and suggest that targeting sFLT1-induced pathways may be an avenue for treating preeclampsia and improving fetal outcomes.


Assuntos
Angiotensina II/metabolismo , Óxido Nítrico Sintase Tipo III/metabolismo , Pré-Eclâmpsia/metabolismo , Receptor 1 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Angiotensinas/metabolismo , Animais , Pressão Sanguínea , Modelos Animais de Doenças , Feminino , Humanos , Masculino , Camundongos , NG-Nitroarginina Metil Éster/química , Estresse Oxidativo , Fosforilação , Placenta/metabolismo , Gravidez , Prenhez , Transdução de Sinais , Citrato de Sildenafila/uso terapêutico , Resultado do Tratamento
3.
Endocrinology ; 155(11): 4461-72, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25051445

RESUMO

The steroid hormone aldosterone (aldo) contributes to cardiovascular disease in animal models and in humans. Aldo activates the mineralocorticoid receptor (MR), a hormone-activated transcription factor, and indeed, pharmacological MR inhibition improves cardiovascular outcomes. Because the incidence of cardiovascular disease is lower in premenopausal women, we hypothesized that estrogen (E2) signaling through the estrogen receptor (ER) may protect the vasculature by inhibiting the detrimental effects of aldo signaling through the MR. We demonstrate that E2-activated ER inhibits MR-mediated gene transcription from the mouse mammary tumor virus reporter in human embryonic kidney-293 cells. In contrast, aldo-activated MR does not affect ER-mediated gene transcription. The ERα N terminus (amino acids 1-253) containing part of the DNA-binding domain is sufficient to inhibit MR genomic function, although point mutations reveal that DNA binding, ligand-independent activation, and rapid nongenomic ERα signaling are not required for this effect. Furthermore, ERα and MR are part of a complex in cell lysates, with amino acids 1-233 of the ERα N terminus being sufficient to complex with the MR. Overall, the ability of ERα to inhibit MR-mediated gene transcription correlates with the ability of ERα segments to both localize to the nucleus and complex with the MR. In cultured vascular endothelial cells expressing ERα, E2 inhibits aldo induction of the vascular MR target gene intercellular adhesion molecule-1 (ICAM-1). ICAM-1 induction by endothelial MR is known to promote vascular inflammation that could contribute to the mechanism of aldo-induced atherosclerosis. E2 also inhibits aldo induction of ICAM-1 protein and prevents aldo-enhanced leukocyte adhesion to endothelial cells. These studies support a new model in which E2-activated ER in endothelial cells forms a complex with MR in the nucleus to modulate MR regulation of the proinflammatory gene ICAM-1. Estrogen inhibition of MR regulation of genes that contribute to cardiovascular disease may be a new mechanism by which premenopausal women are protected from cardiovascular disease.


Assuntos
Estrogênios/farmacologia , Regulação da Expressão Gênica , Antagonistas de Receptores de Mineralocorticoides/farmacologia , Receptores de Estrogênio/fisiologia , Receptores de Mineralocorticoides/fisiologia , Animais , Células Cultivadas , Receptor alfa de Estrogênio/química , Receptor alfa de Estrogênio/genética , Receptor alfa de Estrogênio/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Células HEK293 , Humanos , Ligação Proteica , Estrutura Terciária de Proteína , Receptores de Estrogênio/química , Receptores de Mineralocorticoides/química , Células U937 , Xenopus
4.
Arterioscler Thromb Vasc Biol ; 34(2): 355-64, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24311380

RESUMO

OBJECTIVE: Vascular remodeling occurs after endothelial injury, resulting in smooth muscle cell (SMC) proliferation and vascular fibrosis. We previously demonstrated that the blood pressure-regulating hormone aldosterone enhances vascular remodeling in mice at sites of endothelial injury in a placental growth factor-dependent manner. We now test the hypothesis that SMC mineralocorticoid receptors (MRs) directly mediate the remodeling effects of aldosterone and further explore the mechanism. APPROACH AND RESULTS: A wire-induced carotid injury model was performed in wild-type mice and mice with inducible SMC-specific deletion of the MR. Aldosterone did not affect re-endothelialization after injury in wild-type mice. Deletion of SMC-MR prevented the 79% increase in SMC proliferation induced by aldosterone after injury in MR-Intact littermates. Moreover, both injury-induced and aldosterone-enhanced vascular fibrosis were attenuated in SMC-specific MR knockout mice. Further exploration of the mechanism revealed that aldosterone-induced vascular remodeling is prevented by in vivo blockade of the placental growth factor-specific receptor, type 1 vascular endothelial growth factor receptor (VEGFR1), the receptor for placental growth factor. Immunohistochemistry of carotid vessels shows that the induction of VEGFR1 expression in SMC after vascular injury is attenuated by 72% in SMC-specific MR knockout mice. Moreover, aldosterone induction of vascular placental growth factor mRNA expression and protein release are also prevented in vessels lacking SMC-MR. CONCLUSIONS: These studies reveal that SMC-MR is necessary for aldosterone-induced vascular remodeling independent of renal effects on blood pressure. SMC-MR contributes to induction of SMC VEGFR1 in the area of vascular injury and to aldosterone-enhanced vascular placental growth factor expression and hence the detrimental effects of aldosterone are prevented by VEGFR1 blockade. This study supports exploring MR antagonists and VEGFR1 blockade to prevent pathological vascular remodeling induced by aldosterone.


Assuntos
Aldosterona/farmacologia , Lesões das Artérias Carótidas/metabolismo , Proliferação de Células/efeitos dos fármacos , Músculo Liso Vascular/efeitos dos fármacos , Miócitos de Músculo Liso/efeitos dos fármacos , Receptores de Mineralocorticoides/agonistas , Animais , Anticorpos/farmacologia , Artérias Carótidas/efeitos dos fármacos , Artérias Carótidas/metabolismo , Artérias Carótidas/patologia , Lesões das Artérias Carótidas/genética , Lesões das Artérias Carótidas/patologia , Modelos Animais de Doenças , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Fibrose , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/patologia , Miócitos de Músculo Liso/metabolismo , Miócitos de Músculo Liso/patologia , Fator de Crescimento Placentário , Proteínas da Gravidez/genética , Proteínas da Gravidez/metabolismo , RNA Mensageiro/metabolismo , Receptores de Mineralocorticoides/deficiência , Receptores de Mineralocorticoides/genética , Fatores de Tempo , Receptor 1 de Fatores de Crescimento do Endotélio Vascular/antagonistas & inibidores , Receptor 1 de Fatores de Crescimento do Endotélio Vascular/metabolismo
5.
J Am Soc Nephrol ; 25(4): 717-25, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24335973

RESUMO

Soluble fms-like tyrosine kinase 1 (sFlt1), a circulating antiangiogenic protein, is elevated in kidney diseases and contributes to the development of preeclampsia. Hydrogen sulfide is a vasorelaxant and proangiogenic gas with therapeutic potential in several diseases. Therefore, we evaluated the potential therapeutic effect and mechanisms of action of hydrogen sulfide in an animal model of sFlt1-induced hypertension, proteinuria, and glomerular endotheliosis created by adenovirus-mediated overexpression of sFlt1 in Sprague-Dawley rats. We injected sFlt1-overexpressing animals intraperitoneally with the hydrogen sulfide-donor sodium hydrosulfide (NaHS) (50 µmol/kg, twice daily) or vehicle (n=7 per group). Treatment with NaHS for 8 days significantly reduced sFlt1-induced hypertension, proteinuria, and glomerular endotheliosis. Measurement of plasma protein concentrations with ELISA revealed a reduction of free plasma sFlt1 and an increase of free plasma vascular endothelial growth factor (VEGF) after treatment with NaHS. Renal VEGF-A mRNA expression increased significantly with NaHS treatment. In vitro, NaHS was proangiogenic in an endothelial tube assay and attenuated the antiangiogenic effects of sFlt1. Stimulation of podocytes with NaHS resulted in both short-term VEGF release (120 minutes) and upregulation of VEGF-A mRNA levels (24 hours). Furthermore, pretreatment of mesenteric vessels with a VEGF receptor 2-neutralizing antibody significantly attenuated NaHS-induced vasodilation. These results suggest that hydrogen sulfide ameliorates sFlt1-induced hypertension, proteinuria, and glomerular endotheliosis in rats by increasing VEGF expression. Further studies are warranted to evaluate the role of hydrogen sulfide as a novel therapeutic agent for vascular disorders such as preeclampsia.


Assuntos
Sulfeto de Hidrogênio/farmacologia , Hipertensão/tratamento farmacológico , Proteinúria/tratamento farmacológico , Fator A de Crescimento do Endotélio Vascular/fisiologia , Receptor 1 de Fatores de Crescimento do Endotélio Vascular/fisiologia , Animais , Feminino , Glomérulos Renais/efeitos dos fármacos , Podócitos/metabolismo , Ratos , Ratos Sprague-Dawley , Regulação para Cima , Fator A de Crescimento do Endotélio Vascular/genética , Vasodilatação/efeitos dos fármacos
6.
BMC Mol Biol ; 9: 102, 2008 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-19014500

RESUMO

BACKGROUND: Research using the zebrafish model has experienced a rapid growth in recent years. Although real-time reverse transcription PCR (QPCR), normalized to an internal reference ("housekeeping") gene, is a frequently used method for quantifying gene expression changes in zebrafish, many commonly used housekeeping genes are known to vary with experimental conditions. To identify housekeeping genes that are stably expressed under different experimental conditions, and thus suitable as normalizers for QPCR in zebrafish, the present study evaluated the expression of eight commonly used housekeeping genes as a function of stage and hormone/toxicant exposure during development, and by tissue type and sex in adult fish. RESULTS: QPCR analysis was used to quantify mRNA levels of bactin1, tubulin alpha 1(tuba1), glyceraldehyde-3-phosphate dehydrogenase (gapdh), glucose-6-phosphate dehydrogenase (g6pd), TATA-box binding protein (tbp), beta-2-microglobulin (b2m), elongation factor 1 alpha (elfa), and 18s ribosomal RNA (18s) during development (2 - 120 hr postfertilization, hpf); in different tissue types (brain, eye, liver, heart, muscle, gonads) of adult males and females; and after treatment of embryos/larvae (24 - 96 hpf) with commonly used vehicles for administration and agents that represent known environmental endocrine disruptors. All genes were found to have some degree of variability under the conditions tested here. Rank ordering of expression stability using geNorm analysis identified 18s, b2m, and elfa as most stable during development and across tissue types, while gapdh, tuba1, and tpb were the most variable. Following chemical treatment, tuba1, bactin1, and elfa were the most stably expressed whereas tbp, 18s, and b2m were the least stable. Data also revealed sex differences that are gene- and tissue-specific, and treatment effects that are gene-, vehicle- and ligand-specific. When the accuracy of QPCR analysis was tested using different reference genes to measure suppression of cyp19a1b by an estrogen receptor antagonist and induction of cyp1a by an arylhydrocarbon receptor agonist, the direction and magnitude of effects with stable and unstable genes differed. CONCLUSION: This study provides data that can be expected to aid zebrafish researchers in their initial choice of housekeeping genes for future studies, but underlines the importance of further validating housekeeping genes for each new experimental paradigm and fish species.


Assuntos
Proteínas de Peixe-Zebra/genética , Peixe-Zebra/genética , Animais , Embrião não Mamífero/metabolismo , Feminino , Expressão Gênica , Perfilação da Expressão Gênica , Masculino , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fatores Sexuais , Peixe-Zebra/embriologia , Peixe-Zebra/crescimento & desenvolvimento , Proteínas de Peixe-Zebra/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA