Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Fetal Diagn Ther ; 36(3): 231-41, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25115231

RESUMO

BACKGROUND: While microarray testing can identify chromosomal abnormalities missed by karyotyping, its prenatal use is often avoided in low-risk pregnancies due to the possible identification of variants of uncertain significance (VOUS). METHODS: We tested 2,970 prenatal samples of all referral indications using a rapid BACs-on-Beads-based assay with probes for sex chromosomes, common autosomal aneuploidies, and 20 microdeletion/microduplication syndromes, designed as an alternative to microarray in low-risk pregnancies and an alternative to rapid aneuploidy testing in pregnancies also undergoing microarray analysis. RESULTS: Interpretable results were obtained in 2,940 cases (99.0%), with 89% receiving results in 1 day. Aneuploidies were detected in 7.3% and partial chromosome abnormalities in 0.45% (n = 13), including 5 referred for maternal age, abnormal maternal serum screen, or isolated ultrasound markers. The added detection above karyotype was 1 in 745 in lower-risk cases with normal ultrasounds or isolated ultrasound markers/increased nuchal measurements and 1 in 165 for fetuses with structural/growth abnormalities. Neither false negatives nor false positives were found within test limitations. Female polyploidy could not be detected, while polyploidies with Y chromosomes were suspected and confirmed through additional analysis. CONCLUSION: When combined with karyotyping, this assay provides increased interrogation of specific chromosomal regions, while limiting VOUS identification.


Assuntos
Aneuploidia , Duplicação Cromossômica , Técnicas de Diagnóstico Molecular/estatística & dados numéricos , Diagnóstico Pré-Natal/estatística & dados numéricos , Adulto , Análise Citogenética , Feminino , Humanos , Masculino , Gravidez , Estudos Retrospectivos
2.
Mol Cytogenet ; 4: 25, 2011 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-22087757

RESUMO

BACKGROUND: Cytogenetic evaluation is a key component of the diagnosis and prognosis of chronic lymphocytic leukemia (CLL). We performed oligonucleotide-based comparative genomic hybridization microarray analysis on 34 samples with CLL and known abnormal karyotypes previously determined by cytogenetics and/or fluorescence in situ hybridization (FISH). RESULTS: Using a custom designed microarray that targets >1800 genes involved in hematologic disease and other malignancies, we identified additional cryptic aberrations and novel findings in 59% of cases. These included gains and losses of genes associated with cell cycle regulation, apoptosis and susceptibility loci on 3p21.31, 5q35.2q35.3, 10q23.31q23.33, 11q22.3, and 22q11.23. CONCLUSIONS: Our results show that microarray analysis will detect known aberrations, including microscopic and cryptic alterations. In addition, novel genomic changes will be uncovered that may become important prognostic predictors or treatment targets for CLL in the future.

3.
Mol Cytogenet ; 4(1): 4, 2011 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-21291569

RESUMO

BACKGROUND: Chronic lymphocytic leukemia (CLL) is a highly variable disease with life expectancies ranging from months to decades. Cytogenetic findings play an integral role in defining the prognostic significance and treatment for individual patients. RESULTS: We have evaluated 25 clinical cases from a tertiary cancer center that have an established diagnosis of CLL and for which there was prior cytogenetic and/or fluorescence in situ hybridization (FISH) data. We performed microarray-based comparative genomic hybridization (aCGH) using a bacterial artificial chromosome (BAC)-based microarray designed for the detection of known constitutional genetic syndromes. In 15 of the 25 cases, aCGH detected all copy number imbalances identified by prior cytogenetic and/or FISH studies. For the majority of those not detected, the aberrations were present at low levels of mosaicism. Furthermore, for 15 of the 25 cases, additional abnormalities were detected. Four of those cases had deletions that mapped to intervals implicated in inherited predisposition to CLL. For most cases, aCGH was able to detect abnormalities present in as few as 10% of cells. Although changes in ploidy are not easily discernable by aCGH, results for two cases illustrate the detection of additional copy gains and losses present within a mosaic tetraploid cell population. CONCLUSIONS: Our results illustrate the successful evaluation of CLL using a microarray optimized for the interrogation of inherited disorders and the identification of alterations with possible relevance to CLL susceptibility.

4.
DNA Repair (Amst) ; 9(5): 551-7, 2010 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-20299287

RESUMO

BLM, the gene mutated in Bloom syndrome (BS), encodes an ATP-dependent RecQ DNA helicase that is involved in the resolution of Holliday junctions, in the suppression of crossovers and in the management of damaged replication forks. Cells from BS patients have a characteristically high level of sister chromatid exchanges (SCEs), and increased chromosomal aberrations. Fibroblasts and lymphocytes of BS patients also exhibit increased mutation frequency at the X-linked reporter gene HPRT, suggesting that BLM also plays a role in preventing small scale genomic rearrangements. However, the nature of such small scale alterations has not been well characterized. Here we report the characterization of Hprt mutations in vivo in Blm hypomorphic mice, Blm(tm1Ches)/Blm(tm3Brd). We found that the frequency of Hprt mutants was increased about 6-fold in the Blm(tm1Ches)/Blm(tm3Brd) mice when compared to Blm(tm3Brd) heterozygous mice or wildtype mice. Molecular characterization of Hprt gene in the mutant clones indicates that many of the mutations were caused by deletions that range from several base pairs to several thousand base pairs. While deletions in BLM-proficient somatic cells are often shown to be mediated by direct repeats, all three deletion junctions in Hprt of Blm(tm1Ches)/Blm(tm3Brd) mice were flanked by inverted repeats, suggesting that secondary structures formed during DNA replication, when resolved improperly, may lead to deletions. In addition, single base pair substitution and insertion/deletion were also detected in the mutant clones. Taken together, our results indicated that BLM function is important in preventing small scale genetic alterations. Thus, both large scale and small scale genetic alterations are elevated when BLM is reduced, which may contribute to loss of function of tumor suppressor genes and subsequent tumorigenesis.


Assuntos
Genes Ligados ao Cromossomo X/genética , Loci Gênicos/genética , Hipoxantina Fosforribosiltransferase/genética , Mutação , RecQ Helicases/metabolismo , Animais , Sequência de Bases , Síndrome de Bloom/genética , Análise Mutacional de DNA , Suscetibilidade a Doenças , Feminino , Fibroblastos/metabolismo , Humanos , Hipoxantina Fosforribosiltransferase/metabolismo , Sequências Repetidas Invertidas/genética , Masculino , Camundongos , Dados de Sequência Molecular , RecQ Helicases/genética , Deleção de Sequência , Homologia de Sequência do Ácido Nucleico , Linfócitos T/metabolismo
5.
Carcinogenesis ; 31(6): 968-73, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19995795

RESUMO

Basal cell carcinomas (BCCs) have relative genomic stability and relatively benign clinical behavior but whether these two are related causally is unknown. To investigate the effects of introducing genomic instability into murine BCCs, we have compared ionizing radiation-induced tumorigenesis in Ptch1(+/-) mice versus that in Ptch1(+/-) mice carrying mutant Blm alleles. We found that BCCs in Ptch1(+/-) Blm(tm3Brd/tm3Brd) mice had a trend toward greater genomic instability as measured by array comprehensive genomic hybridization and that these mice developed significantly more microscopic BCCs than did Ptch1(+/-) Blm(+/tm3Brd) or Ptch1(+/-) Blm(+/+) mice. The mutant Blm alleles also markedly enhanced the formation of rhabdomyosarcomas (RMSs), another cancer to which Ptch1(+/)(-) mice and PTCH1(+/)(-) (basal cell nevus syndrome) patients are susceptible. Highly recurrent but different copy number changes were associated with the two tumor types and included losses of chromosomes 4 and 10 in all BCCs and gain of chromosome 10 in 80% of RMSs. Loss of chromosome 11 and 13, including the Trp53 and Ptch1 loci, respectively, occurred frequently in BCCs, suggesting tissue-specific selection for genes or pathways that collaborate with Ptch deficiency in tumorigenesis. Despite the quantitative differences, there was no dramatic qualititative difference in the BCC or RMS tumors associated with the mutant Blm genotype.


Assuntos
Carcinoma Basocelular/genética , RecQ Helicases/genética , Rabdomiossarcoma/genética , Neoplasias Cutâneas/genética , Alelos , Animais , Carcinoma Basocelular/patologia , Camundongos , Rabdomiossarcoma/patologia
6.
DNA Repair (Amst) ; 6(1): 115-20, 2007 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-17084680

RESUMO

Xeroderma pigmentosum (XP) genetic complementation group C (XP-C) is the most common form of the disease worldwide. Thirty-four distinct genetic defects have been identified in 45 XP-C patients. Further identification of such defects and the frequency of their occurrence offers the potential of generating diagnostic and prognostic molecular screening panels. Archival material (such as formalin-fixed paraffin embedded skin) may be useful for the identification of novel genetic variations and for documenting the frequency of individual genetic defects in patients who are no longer available for study. However, the use of archival material precludes direct analysis of changes in the mRNA resulting from genomic changes. The serendipitous reacquisition of an XP individual in whom genetic defects were previously characterized in archival material allowed confirmation of the defects as well as a direct analysis of the consequences of these defects on mRNA, mRNA expression and on cellular phenotypes.


Assuntos
Proteínas de Ligação a DNA/genética , Neoplasias Cutâneas/genética , Xeroderma Pigmentoso/genética , Sobrevivência Celular/genética , Sobrevivência Celular/efeitos da radiação , Células Cultivadas , Reparo do DNA , Fibroblastos/metabolismo , Humanos , Pele/metabolismo , Neoplasias Cutâneas/patologia , Raios Ultravioleta , Xeroderma Pigmentoso/patologia
7.
DNA Repair (Amst) ; 6(1): 100-14, 2007 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-17079196

RESUMO

The disease Xeroderma Pigmentosum (XP) is genetically heterogeneous and defined by pathogenic variants (formerly termed mutations) in any of eight different genes. Pathogenic variants in the XPC gene are the most commonly observed in US patients. Moreover, pathogenic variants in just four of the genes, XPA, XPC, XPD/ERCC2 and XPV/POLH account for 91% of all XP cases worldwide. In the current study, we describe the clinical, histopathologic, molecular genetic, and pathophysiological features of a 19-year-old female patient clinically diagnosed with XP as an infant. Analysis of archival material reveals a novel variation of a 13 base pair deletion in XPC exon 14 and a previously reported A>C missense pathogenic variant in the proximal splice site for XPC exon 6. Both variations induce frameshifts most likely leading to a truncated XPC protein product. Quantitative RT-PCR also revealed reduced mRNA levels in the archived specimen. Analysis of the XPA, XPD/ERCC2 and XPV/POLH genes in the current specimen failed to reveal pathologic variants. All previously reported pathogenic variants, polymorphisms and known amino acid changes for the XPC gene are compiled and described in the current nomenclature. Given the relative ease of screening for genetic variation and the potential role for such variation in human disease, a proposal for screening appropriate archival materials for alterations in the four most prevalent XP genes is presented.


Assuntos
Proteínas de Ligação a DNA/genética , Variação Genética , Xeroderma Pigmentoso/diagnóstico , Adulto , Arquivos , Reparo do DNA , Feminino , Humanos , Mutação , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Xeroderma Pigmentoso/genética , Proteína de Xeroderma Pigmentoso Grupo A/genética , Proteína Grupo D do Xeroderma Pigmentoso/genética
8.
DNA Repair (Amst) ; 5(1): 61-70, 2006 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-16140041

RESUMO

Immortalized cells frequently have disruptions of p53 activity and lack p53-dependent nucleotide excision repair (NER). We hypothesized that telomerase immortalization would not alter p53-mediated ultraviolet light (UV)-induced DNA damage responses. DNA repair proficient primary diploid human fibroblasts (GM00024) were immortalized by transduction with a telomerase expressing retrovirus. Empty retrovirus transduced cells senesced after a few doublings. Telomerase transduced GM00024 cells (tGM24) were cultured continuously for 6 months (>60 doublings). Colony forming ability after UV irradiation was dose-dependent between 0 and 20J/m2 UVC (LD50=5.6J/m2). p53 accumulation was UV dose- and time-dependent as was induction of p48(XPE/DDB2), p21(CIP1/WAF1), and phosphorylation on p53-S15. UV dose-dependent apoptosis was measured by nuclear condensation. UV exposure induced UV-damaged DNA binding as monitored by electrophoretic mobility shift assays using UV irradiated radiolabeled DNA probe was inhibited by p53-specific siRNA transfection. p53-Specific siRNA transfection also prevented UV induction of p48 and improved UV survival measured by colony forming ability. Strand-specific NER of cyclobutane pyrimidine dimers (CPD) within DHFR was identical in tGM24 and GM00024 cells. CPD removal from the transcribed strand was nearly complete in 6h and from the non-transcribed strand was 73% complete in 24h. UV-induced HPRT mutagenesis in tGM24 was indistinguishable from primary human fibroblasts. These wide-ranging findings indicate that the UV-induced DNA damage response remains intact in telomerase-immortalized cells. Furthermore, telomerase immortalization provides permanent cell lines for testing the immediate impact on NER and mutagenesis of selective genetic manipulation without propagation to establish mutant lines.


Assuntos
Dano ao DNA , Mutagênese/efeitos da radiação , Telomerase/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Raios Ultravioleta/efeitos adversos , Apoptose/genética , Apoptose/efeitos da radiação , Linhagem Celular Transformada , Sobrevivência Celular/efeitos da radiação , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Reparo do DNA/fisiologia , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/efeitos da radiação , Fibroblastos/fisiologia , Fibroblastos/efeitos da radiação , Humanos , Hipoxantina Fosforribosiltransferase/genética , Hipoxantina Fosforribosiltransferase/efeitos da radiação , Masculino , Fosforilação , Serina/metabolismo , Telomerase/genética , Tetra-Hidrofolato Desidrogenase/genética , Tetra-Hidrofolato Desidrogenase/metabolismo , Proteína Supressora de Tumor p53/genética
9.
Mol Cell Biol ; 25(18): 8368-78, 2005 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-16135823

RESUMO

Defects in the XPD gene can result in several clinical phenotypes, including xeroderma pigmentosum (XP), trichothiodystrophy, and, less frequently, the combined phenotype of XP and Cockayne syndrome (XP-D/CS). We previously showed that in cells from two XP-D/CS patients, breaks were introduced into cellular DNA on exposure to UV damage, but these breaks were not at the sites of the damage. In the present work, we show that three further XP-D/CS patients show the same peculiar breakage phenomenon. We show that these breaks can be visualized inside the cells by immunofluorescence using antibodies to either gamma-H2AX or poly-ADP-ribose and that they can be generated by the introduction of plasmids harboring methylation or oxidative damage as well as by UV photoproducts. Inhibition of RNA polymerase II transcription by four different inhibitors dramatically reduced the number of UV-induced breaks. Furthermore, the breaks were dependent on the nucleotide excision repair (NER) machinery. These data are consistent with our hypothesis that the NER machinery introduces the breaks at sites of transcription initiation. During transcription in UV-irradiated XP-D/CS cells, phosphorylation of the carboxy-terminal domain of RNA polymerase II occurred normally, but the elongating form of the polymerase remained blocked at lesions and was eventually degraded.


Assuntos
Síndrome de Cockayne/genética , Dano ao DNA , Reparo do DNA , Transcrição Gênica , Xeroderma Pigmentoso/genética , Síndrome de Cockayne/complicações , DNA/efeitos da radiação , Fibroblastos/imunologia , Fibroblastos/metabolismo , Fibroblastos/efeitos da radiação , Histonas/análise , Humanos , Fosforilação , Poli Adenosina Difosfato Ribose/análise , RNA Polimerase II/metabolismo , Raios Ultravioleta , Xeroderma Pigmentoso/complicações
10.
Am J Hum Genet ; 77(1): 132-9, 2005 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-15887093

RESUMO

Roberts syndrome (RS) is a developmental disorder characterized by tetraphocomelia and a broad spectrum of additional clinical features. Most patients with RS exhibit characteristic cytogenetic phenotypes, which include an abnormal appearance of pericentromeric heterochromatin on metaphase chromosomes, referred to as "heterochromatic repulsion." In the present study, we use complementation of this abnormal cytogenetic phenotype as a means to identify a specific region of the normal human genome capable of rendering phenotypic correction. We screened the entire human genome, using a transient chromosome-transfer assay, and demonstrated complementation exclusively after the transfer of proximal chromosome 8p, a result subsequently confirmed by stable microcell-mediated chromosome transfer. Additionally, homozygosity mapping was used to refine the interval of this complementing locus to 8p21. The results are consistent with the notion that the single gene defect responsible for heterochromatic splaying and developmental abnormalities maps to chromosome 8p21.


Assuntos
Anormalidades Múltiplas/genética , Doenças do Desenvolvimento Ósseo/genética , Cromossomos Humanos Par 8 , Heterocromatina/genética , Mapeamento Cromossômico , Anormalidades Craniofaciais , Teste de Complementação Genética , Homozigoto , Humanos , Fenótipo , Síndrome
11.
Curr Opin Genet Dev ; 14(1): 5-10, 2004 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-15108798

RESUMO

The field of DNA damage responsiveness in general, and the consequences of endogenous and exogenous base damage in DNA, in particular, has made new and exciting contributions to our increasing understanding of the initiation and progression of neoplasia in humans. This article presents some of the highlights in this area of investigation, with a particular emphasis on DNA repair, the tolerance of DNA damage and its contribution to mutagenesis, and DNA damage checkpoint regulation.


Assuntos
Dano ao DNA/genética , Reparo do DNA/genética , Mutagênese/genética , Neoplasias/genética , Bacteriocinas/genética , Proteínas de Ligação a DNA/genética , DNA Polimerase Dirigida por DNA/genética , Anemia de Fanconi/genética , Genes cdc/fisiologia , Humanos , Mutagênese/fisiologia , Rad51 Recombinase
12.
DNA Repair (Amst) ; 3(4): 379-86, 2004 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-15010313

RESUMO

Mutational hot spots in the human p53 gene are well established in tumors in the human population and are frequently negative prognosticators of the clinical outcome. We previously developed a mouse model of skin cancer with mutations in the xeroderma pigmentosum group C gene (Xpc). UVB radiation-induced skin cancer is significantly enhanced in these mice when they also carry a mutation in one copy of the Trp53 gene (Xpc-/-Trp53+/-). Skin tumors in these mice often contain inactivating mutations in the remaining Trp53 allele and we have previously reported a novel mutational hot spot at a non-dipyrimidine site (ACG) in codon 122 of the Trp53 gene in the tumors. Here we show that this mutation is not a hot spot in Xpa or Csa mutant mice. Furthermore, the mutation in codon T122 can be identified in mouse skin DNA from (Xpc-/-Trp53+/-) mice as early as 2 weeks after exposure to UVB radiation, well before histological evidence of dysplastic or neoplastic changes. Since this mutational hot spot is not at a dipyrimidine site and is apparently Xpc-specific, we suggest that some form of non-dipyrimidine base damage is normally repaired in a manner that is distinct from conventional nucleotide excision repair, but that requires XPC protein.


Assuntos
Reparo do DNA , Proteínas de Ligação a DNA/fisiologia , Genes p53 , Mutação , Raios Ultravioleta , Animais , Sequência de Bases , Códon , Primers do DNA , Proteínas de Ligação a DNA/genética , Camundongos , Camundongos Mutantes
13.
DNA Repair (Amst) ; 2(12): 1387-404, 2003 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-14642567

RESUMO

Independent mouse models for Bloom syndrome (BS) exist, each thought to disrupt Blm gene function. However, animals bearing these alleles exhibit distinct phenotypes. Blm(tm1Ches) and Blm(tm1Grdn) homozygous mutant animals exhibit embryonic lethality while in another, Blm(tm3Brd), homozygosity yields viable, fertile animals with a cancer predisposition. Further characterization reveals the Blm(tm3Brd) allele to be a hypomorph, producing a diminished quantity of normal mRNA and protein. The Blm(tm3Brd) allele produces sufficient normal protein to rescue Blm(tm1Ches) lethality. Evaluation of viable animals reveals an inverse correlation between the quantity of Blm protein and the level of chromosome instability and a similar genotypic relationship for tumor predisposition indicating that Blm protein is rate limiting for maintaining genomic stability and the avoidance of tumors.


Assuntos
Adenosina Trifosfatases/metabolismo , Síndrome de Bloom/genética , Instabilidade Cromossômica , DNA Helicases/metabolismo , Desenvolvimento Embrionário e Fetal/genética , Predisposição Genética para Doença , Neoplasias/genética , Animais , Perda do Embrião/genética , Feminino , Marcação de Genes , Masculino , Camundongos , Camundongos Knockout , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RecQ Helicases , Baço/metabolismo , Supressão Genética
14.
Carcinogenesis ; 23(6): 959-65, 2002 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-12082017

RESUMO

Lack of DNA polymerase eta and the attendant defect in bypass replication of pyrimidine dimers induced in DNA by ultraviolet light (UV) underlie the enhanced mutagenesis and carcinogenesis observed in xeroderma pigmentosum variant (XP-V). We investigated whether diploid XP-V fibroblasts growing in culture are also more susceptible to UV-induced clastogenesis than normal human fibroblasts (NHF). This study utilized diploid fibroblasts immortalized by the ectopic expression of human telomerase. The cell lines displayed checkpoint responses to DNA damage comparable with those measured in the parental strains. Shortly after exposure to low doses of UVC (< or =4 J/m2), XP-V cells accumulated daughter strand gaps in excess of normal controls (>25-fold). Daughter strand gaps generated in UV-irradiated S phase cells are potential precursors of chromatid-type chromosomal aberrations. Nonetheless, chromatid-type chromosomal aberrations were only 1.5 to 2 times more abundant in XP-V than in NHF exposed to the same UVC dose. XP-V cells, however, displayed S phase delays at lower doses of UVC and for longer periods of time than NHF. These results support the hypothesis that aberrant DNA structures activate S phase checkpoint responses that increase the time available for postreplication repair. Alternatively, cells that cannot be properly repaired remain permanently arrested and never reach mitosis. These responses protect human cells from chromosomal aberrations, especially when other pathways, such as accurate lesion bypass, are lost.


Assuntos
Testes de Carcinogenicidade , Transformação Celular Neoplásica/efeitos da radiação , Aberrações Cromossômicas , Dano ao DNA/efeitos da radiação , DNA/genética , Variação Genética , Raios Ultravioleta , Xeroderma Pigmentoso/genética , Linhagem Celular , DNA/efeitos da radiação , Feto , Humanos , Cariotipagem , Pulmão , Reação em Cadeia da Polimerase , Valores de Referência , Fase S/efeitos da radiação , Telomerase/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA