Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Mol Cancer Ther ; 22(10): 1182-1190, 2023 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-37552607

RESUMO

The greater efficacy of DNA-damaging drugs for pancreatic adenocarcinoma (PDAC) relies on targeting cancer-specific vulnerabilities while sparing normal organs and tissues due to their inherent toxicities. We tested LP-184, a novel acylfulvene analog, for its activity in preclinical models of PDAC carrying mutations in the DNA damage repair (DDR) pathways. Cytotoxicity of LP-184 is solely dependent on prostaglandin reductase 1 (PTGR1), so that PTGR1 expression robustly correlates with LP-184 cytotoxicity in vitro and in vivo. Low-passage patient-derived PDAC xenografts with DDR deficiencies treated ex vivo are more sensitive to LP-184 compared with DDR-proficient tumors. Additional in vivo testing of PDAC xenografts for their sensitivity to LP-184 demonstrates marked tumor growth inhibition in models harboring pathogenic mutations in ATR, BRCA1, and BRCA2. Depletion of PTGR1, however, completely abrogates the antitumor effect of LP-184. Testing combinatorial strategies for LP-184 aimed at deregulation of nucleotide excision repair proteins ERCC3 and ERCC4 established synergy. Our results provide valuable biomarkers for clinical testing of LP-184 in a large subset of genetically defined characterized refractory carcinomas. High PTGR1 expression and deleterious DDR mutations are present in approximately one third of PDAC making these patients ideal candidates for clinical trials of LP-184.


Assuntos
Adenocarcinoma , Oxirredutases do Álcool , Antineoplásicos , Dano ao DNA , Neoplasias Pancreáticas , Humanos , Reparo do DNA , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/genética , Oxirredutases do Álcool/genética , Animais , Antineoplásicos/farmacologia
2.
Oncotarget ; 7(23): 35327-40, 2016 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-27166256

RESUMO

Selenite (HSeO3-) is a monovalent anion of the essential trace element and micronutrient selenium (Se). In therapeutic concentrations, HSeO3- has been studied for treating certain cancers, serious inflammatory disorders, and septic shock. Little is known, however, about HSeO3- uptake into mammalian cells; until now, no mammalian HSeO3- uptake transporter has been identified. The ubiquitous mammalian ZIP8 divalent cation transporter (encoded by the SLC39A8 gene) is bicarbonate-dependent, moving endogenous substrates (Zn2+, Mn2+, Fe2+ or Co2+) and nonessential metals such as Cd2+ into the cell. Herein we studied HSeO3- uptake in: human and mouse cell cultures, shRNA-knockdown experiments, Xenopus oocytes, wild-type mice and two transgenic mouse lines having genetically altered ZIP8 expression, and mouse erythrocytes ex vivo. In mammalian cell culture, excess Zn2+ levels and/or ZIP8 over-expression can be associated with diminished viability in selenite-treated cells. Intraperitoneal HSeO3- causes the largest ZIP8-dependent increases in intracellular Se content in liver, followed by kidney, heart, lung and spleen. In every model system studied, HSeO3- uptake is tightly associated with ZIP8 protein levels and sufficient Zn2+ and HCO3- concentrations, suggesting that the ZIP8-mediated electroneutral complex transported contains three ions: Zn2+/(HCO3-)(HSeO3-). Transporters having three different ions in their transport complex are not without precedent. Although there might be other HSeO3- influx transporters as yet undiscovered, data herein suggest that mammalian ZIP8 plays a major role in HSeO3- uptake.


Assuntos
Proteínas de Transporte de Cátions/metabolismo , Transporte de Íons/fisiologia , Ácido Selenioso/metabolismo , Animais , Bicarbonatos/metabolismo , Humanos , Camundongos , Xenopus , Zinco/metabolismo
3.
Toxicol Appl Pharmacol ; 262(2): 185-93, 2012 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-22575231

RESUMO

Arsenic methylation is an important cellular metabolic process that modulates arsenic toxicity and carcinogenicity. Biomethylation of arsenic produces a series of mono-, di- and tri-methylated arsenic metabolites that can be detected in tissues and excretions. Here we report that zebrafish exposed to arsenite (As(III)) produces organic arsenicals, including MMA(III), MMA(V) and DMA(V) with characteristic tissue ratios, demonstrating that an arsenic methylation pathway exists in zebrafish. In mammals, cellular inorganic arsenic is methylated by a SAM-dependent arsenic methyltransferase, AS3MT. A zebrafish arsenic methyltransferase homolog, As3mt, was identified by sequence alignment. Western blotting analysis showed that As3mt was universally expressed in zebrafish tissues. Prominent expression in liver and intestine correlated with methylated arsenic metabolites detected in those tissues. As3mt was expressed in and purified from Escherichia coli for in vitro functional studies. Our results demonstrated that As3mt methylated As(III) to DMA(V) as an end product and produced MMA(III) and MMA(V) as intermediates. The activity of As3mt was inhibited by elevated concentrations of the substrate As(III) as well as the metalloid selenite, which is a well-known antagonistic micronutrient of arsenic toxicity. The activity As3mt was abolished by substitution of either Cys160 or Cys210, which corresponds to conserved cysteine residues in AS3MT homologs, suggesting that they are involved in catalysis. Expression in zebrafish of an enzyme that has a similar function to human and rodent orthologs in catalyzing intracellular arsenic biomethylation validates the applicability of zebrafish as a valuable vertebrate model for understanding arsenic-associated diseases in humans.


Assuntos
Arsenitos/farmacocinética , Arsenitos/toxicidade , Metiltransferases/metabolismo , S-Adenosilmetionina/metabolismo , Peixe-Zebra/metabolismo , Sequência de Aminoácidos , Animais , Arsenicais/farmacocinética , Sequência de Bases , Clonagem Molecular/métodos , Feminino , Masculino , Metilação , Metiltransferases/antagonistas & inibidores , Metiltransferases/genética , Modelos Moleculares , Dados de Sequência Molecular , RNA Mensageiro/química , RNA Mensageiro/genética , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/genética , Alinhamento de Sequência , Análise de Sequência de DNA , Selenito de Sódio/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA