Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Inflammation ; 47(1): 346-362, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37831367

RESUMO

Infectious diseases are a significant burden in global healthcare. Pathogens engage with different host defense mechanisms. However, it is currently unknown if there are disease-specific immune signatures and/or if different pathogens elicit common immune-associated molecular entities to common therapeutic interventions. We studied patients enrolled through the Human Immunology Project Consortium (HIPC), which focuses on immune responses to various infections. Blood samples were collected and analyzed from patients during infection and follow-up time points at the convalescent stage. The study included samples from patients with Lyme disease (LD), tuberculosis (TB), malaria (MLA), dengue virus (DENV), and West Nile virus (WNV), as well as kidney transplant patients with cytomegalovirus (CMV) and polyomavirus (BKV) infections. Using an antibody-based assay, we quantified ~ 350 cell surface markers, cytokines, and chemokines involved in inflammation and immunity. Unique protein signatures were identified specific to the acute phase of infection irrespective of the pathogen type, with significant changes during convalescence. In addition, tumor necrosis factor receptor superfamily member 6 (TNR6), C-C Motif Chemokine Receptor 7 (CCR7), and C-C motif chemokine ligand-1 (CCL1) were increased in the acute and convalescent phases across all viral, bacterial, and protozoan compared to blood from healthy donors. Furthermore, despite the differences between pathogens, proteins were enriched in common biological pathways such as cell surface receptor signaling pathway and response to external stimulus. In conclusion, we demonstrated that irrespective of the pathogen type, there are common immunoregulatory and proinflammatory signals.


Assuntos
Proteoma , Vírus do Nilo Ocidental , Humanos , Inflamação , Citocinas , Transdução de Sinais/fisiologia
2.
PLoS Pathog ; 19(5): e1011051, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37195999

RESUMO

Understanding immune mechanisms that mediate malaria protection is critical for improving vaccine development. Vaccination with radiation-attenuated Plasmodium falciparum sporozoites (PfRAS) induces high level of sterilizing immunity against malaria and serves as a valuable tool for the study of protective mechanisms. To identify vaccine-induced and protection-associated responses during malarial infection, we performed transcriptome profiling of whole blood and in-depth cellular profiling of PBMCs from volunteers who received either PfRAS or noninfectious mosquito bites, followed by controlled human malaria infection (CHMI) challenge. In-depth single-cell profiling of cell subsets that respond to CHMI in mock-vaccinated individuals showed a predominantly inflammatory transcriptome response. Whole blood transcriptome analysis revealed that gene sets associated with type I and II interferon and NK cell responses were increased in prior to CHMI while T and B cell signatures were decreased as early as one day following CHMI in protected vaccinees. In contrast, non-protected vaccinees and mock-vaccinated individuals exhibited shared transcriptome changes after CHMI characterized by decreased innate cell signatures and inflammatory responses. Additionally, immunophenotyping data showed different induction profiles of vδ2+ γδ T cells, CD56+ CD8+ T effector memory (Tem) cells, and non-classical monocytes between protected vaccinees and individuals developing blood-stage parasitemia, following treatment and resolution of infection. Our data provide key insights in understanding immune mechanistic pathways of PfRAS-induced protection and infective CHMI. We demonstrate that vaccine-induced immune response is heterogenous between protected and non-protected vaccinees and that inducted-malaria protection by PfRAS is associated with early and rapid changes in interferon, NK cell and adaptive immune responses. Trial Registration: ClinicalTrials.gov NCT01994525.


Assuntos
Vacinas Antimaláricas , Malária Falciparum , Malária , Humanos , Animais , Malária Falciparum/prevenção & controle , Plasmodium falciparum/genética , Vacinação , Interferons , Imunidade , Esporozoítos
3.
PLoS One ; 8(7): e69978, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23894566

RESUMO

In the Drosophila oocyte, gurken (grk) mRNA encodes a secreted TGF-α signal that specifies the future embryonic dorso-ventral axes by altering the fate of the surrounding epithelial follicle cells. We previously identified a number of RNA binding proteins that associate specifically with the 64 nucleotide grk localization signal, including the Drosophila orthologue of polypyrimidine tract-binding protein (PTB), Hephaestus (Heph). To test whether Heph is required for correct grk mRNA or protein function, we used immunoprecipitation to validate the association of Heph with grk mRNA and characterized the heph mutant phenotype. We found that Heph is a component of grk mRNP complexes but heph germline clones show that Heph is not required for grk mRNA localization. Instead, we identify a novel function for Heph in the germline and show that it is required for proper Grk protein localization. Furthermore, we show that Heph is required in the oocyte for the correct organization of the actin cytoskeleton and dorsal appendage morphogenesis. Our results highlight a requirement for an mRNA binding protein in the localization of Grk protein, which is independent of mRNA localization, and we propose that Heph is required in the germline for efficient Grk signalling to the somatic follicle cells during dorso-ventral patterning.


Assuntos
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Células Germinativas/metabolismo , Proteína de Ligação a Regiões Ricas em Polipirimidinas/metabolismo , Citoesqueleto de Actina/metabolismo , Animais , Padronização Corporal , Proteínas de Drosophila/genética , Drosophila melanogaster/embriologia , Drosophila melanogaster/crescimento & desenvolvimento , Feminino , Masculino , Mutação , Oócitos/metabolismo , Proteína de Ligação a Regiões Ricas em Polipirimidinas/genética , Transporte de RNA , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ribonucleoproteínas/metabolismo , Transdução de Sinais , Fator de Crescimento Transformador alfa/genética , Fator de Crescimento Transformador alfa/metabolismo
4.
Mol Cell ; 19(5): 667-78, 2005 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-16137622

RESUMO

DNA methylation is interpreted by a family of methyl-CpG binding domain (MBD) proteins that repress transcription through recruitment of corepressors that modify chromatin. To compare in vivo binding of MeCP2 and MBD2, we analyzed immunoprecipitated chromatin from primary human cells. Genomic sites occupied by the two MBD proteins were mutually exclusive. As MeCP2 was unable to colonize sites vacated by depletion of MBD2, we tested the hypothesis that methyl-CpG alone is insufficient to direct MeCP2 binding. In vitro selection for MeCP2 bound DNA-enriched fragments containing A/T bases ([A/T] > or = 4) adjacent to methyl-CpG. [A/T] > or = 4 was found to be essential for high-affinity binding at selected sites and at known MeCP2 target regions in the Bdnf and Dlx6 genes. MBD2 binding, however, did not require an A/T run. The unexpected restriction of MeCP2 to a defined subset of methyl-CpG sites will facilitate identification of genomic targets that are relevant to Rett Syndrome.


Assuntos
Proteínas Cromossômicas não Histona/metabolismo , Proteínas de Ligação a DNA/metabolismo , DNA/metabolismo , Proteínas Repressoras/metabolismo , Adenina/química , Sequência de Bases , Fator Neurotrófico Derivado do Encéfalo/genética , Linhagem Celular , Linhagem Celular Tumoral , Proteínas Cromossômicas não Histona/genética , Ilhas de CpG/genética , Metilação de DNA , Proteínas de Ligação a DNA/genética , Proteínas de Homeodomínio/genética , Humanos , Proteína 2 de Ligação a Metil-CpG , Mutação , Ligação Proteica , Proteínas Repressoras/genética , Timina/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA