Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 118(27)2021 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-34183407

RESUMO

Reports of biogenic methane (CH4) synthesis associated with a range of organisms have steadily accumulated in the literature. This has not happened without controversy and in most cases the process is poorly understood at the gene and enzyme levels. In marine and freshwater environments, CH4 supersaturation of oxic surface waters has been termed the "methane paradox" because biological CH4 synthesis is viewed to be a strictly anaerobic process carried out by O2-sensitive methanogens. Interest in this phenomenon has surged within the past decade because of the importance of understanding sources and sinks of this potent greenhouse gas. In our work on Yellowstone Lake in Yellowstone National Park, we demonstrate microbiological conversion of methylamine to CH4 and isolate and characterize an Acidovorax sp. capable of this activity. Furthermore, we identify and clone a gene critical to this process (encodes pyridoxylamine phosphate-dependent aspartate aminotransferase) and demonstrate that this property can be transferred to Escherichia coli with this gene and will occur as a purified enzyme. This previously unrecognized process sheds light on environmental cycling of CH4, suggesting that O2-insensitive, ecologically relevant aerobic CH4 synthesis is likely of widespread distribution in the environment and should be considered in CH4 modeling efforts.


Assuntos
Bactérias/metabolismo , Metano/biossíntese , Aerobiose , Betaína/metabolismo , Análise Mutacional de DNA , Microbiota , Mutação/genética , Água
2.
Toxicol Sci ; 181(1): 105-114, 2021 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-33560341

RESUMO

Environmental toxicant exposure contributes to morbidity and mortality of many human diseases. With respect to arsenic, microbially driven chemical transformations dictate its toxicity and mobility in virtually every environment yet studied, so a general hypothesis is that the human gut microbiome determines disease outcome following exposure. However, the complex nature of the gut microbiome and the myriad of potential interactions with human cells/tissues make it challenging to quantify the influence of specific arsenic-active functions-a requisite step in developing effective disease prevention and/or clinical intervention strategies. To control both mammalian and microbial function during toxicant exposure, we genetically defined the gut microbiome of mice using only Escherichia coli strain, AW3110 (▵arsRBC), or the same strain carrying a single genome copy of the Fucus vesiculosus metallothionein gene (AW3110::fmt); a cysteine-rich peptide that complexes with arsenite, facilitating bioaccumulation and reducing its toxic effects. AW3110::fmt bioaccumulated significantly more arsenic and gnotobiotic mice colonized by this strain excreted significantly more arsenic in stool and accumulated significantly less arsenic in organs. Moreover, AW3110::fmt gnotobiotic mice were protected from acute toxicity exposure (20 ppm AsIII) relative to controls. This study demonstrates-in a highly controlled fashion-that a single microbiome function (arsenic bioaccumulation) encoded by a single gene in a single human gut microbiome bacterium significantly alters mammalian host arsenic exposure. The experimental model described herein allows for a highly controlled and directed assessment of microbiome functions, and is useful to quantify the influence of specific microbiome-arsenic interactions that help mitigate human disease.


Assuntos
Arsênio , Microbioma Gastrointestinal , Microbiota , Animais , Arsênio/toxicidade , Bactérias , Microbioma Gastrointestinal/genética , Vida Livre de Germes , Humanos , Camundongos
3.
Environ Microbiol Rep ; 12(2): 136-159, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31773890

RESUMO

Arsenic is a toxin, ranking first on the Agency for Toxic Substances and Disease Registry and the Environmental Protection Agency Priority List of Hazardous Substances. Chronic exposure increases the risk of a broad range of human illnesses, most notably cancer; however, there is significant variability in arsenic-induced disease among exposed individuals. Human genetics is a known component, but it alone cannot account for the large inter-individual variability in the presentation of arsenicosis symptoms. Each part of the gastrointestinal tract (GIT) may be considered as a unique environment with characteristic pH, oxygen concentration, and microbiome. Given the well-established arsenic redox transformation activities of microorganisms, it is reasonable to imagine how the GIT microbiome composition variability among individuals could play a significant role in determining the fate, mobility and toxicity of arsenic, whether inhaled or ingested. This is a relatively new field of research that would benefit from early dialogue aimed at summarizing what is known and identifying reasonable research targets and concepts. Herein, we strive to initiate this dialogue by reviewing known aspects of microbe-arsenic interactions and placing it in the context of potential for influencing host exposure and health risks. We finish by considering future experimental approaches that might be of value.


Assuntos
Arsênio/toxicidade , ATPases Transportadoras de Arsenito/genética , Microbioma Gastrointestinal , Arseniatos/metabolismo , Arsênio/metabolismo , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Bacteroidetes/classificação , Bacteroidetes/genética , Bacteroidetes/isolamento & purificação , Bioacumulação/fisiologia , Resistência a Medicamentos/genética , Proteínas de Escherichia coli/genética , Firmicutes/classificação , Firmicutes/genética , Firmicutes/isolamento & purificação , Microbioma Gastrointestinal/efeitos dos fármacos , Microbioma Gastrointestinal/genética , Trato Gastrointestinal/anatomia & histologia , Trato Gastrointestinal/microbiologia , Genes Bacterianos/efeitos dos fármacos , Humanos , Bombas de Íon/genética , Metagenômica , Chaperonas Moleculares/genética , Complexos Multienzimáticos/genética , Proteobactérias/classificação , Proteobactérias/genética , Proteobactérias/isolamento & purificação , RNA Ribossômico 16S
4.
Environ Microbiol ; 17(6): 1926-40, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24673976

RESUMO

The fate of arsenate (As(V) ) generated by microbial arsenite (As(III) ) oxidation is poorly understood. Agrobacterium tumefaciens wild-type strain (GW4) was studied to determine how the cell copes with As(V) generated in batch culture. GW4 grown heterotrophically with mannitol used As(III) as a supplemental energy supply as reflected by enhanced growth and increased cellular levels of NADH and ATP. Under low phosphate (Pi) conditions and presence of As(III) oxidation, up to ∼ 50% of the resulting As(V) was taken up and found associated with the periplasm, membrane or cytoplasm fractions of the cells. Arsenic was found associated with proteins and polar lipids, but not in nucleic acids or sugars. Thin-layer chromatography and gas chromatography-mass spectrometry analysis suggested the presence of arsenolipids in membranes, presumably as part of the bilayer structure of the cell membrane and replacing Pi under Pi-limiting conditions. The potential role of a Pi-binding protein (PstS) for As(V) uptake was assessed with the His-tag purified protein. Intrinsic tryptophan fluorescence spectra analysis suggests that PstS can bind As(V) , but with lower affinity as compared with Pi. In early stationary phase cells, the As(V) : Pi ratio was approximately 4.3 and accompanied by an altered cell ultrastructure.


Assuntos
Agrobacterium tumefaciens/metabolismo , Arseniatos/metabolismo , Arsenitos/metabolismo , Membrana Celular/química , Trifosfato de Adenosina/metabolismo , Arsênio/metabolismo , Manitol/metabolismo , NAD/metabolismo , Oxirredução
5.
Environ Microbiol ; 17(6): 1950-62, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24674103

RESUMO

Microbial arsenite (AsIII) oxidation forms a critical piece of the arsenic cycle in nature, though our understanding of how and why microorganisms oxidize AsIII remains rudimentary. Our model organism Agrobacterium tumefaciens 5A contains two distinct ars operons (ars1 and ars2) that are similar in their coding region content. The ars1 operon is located nearby the aio operon that is essential for AsIII oxidation. The AsIII/H(+) anti-porters encoded by acr3-1 and acr3-2 are required for maximal AsIII and antimonite (SbIII) resistance, but acr3-1 (negatively regulated by ArsR-1) appears more active in this regard and also required for AsIII oxidation and expression of aioBA. A malate-phosphate anti-porter DctA is regulated by RpoN and AsIII, and is required for normal growth with malate as a sole carbon source. Qualitatively, a ΔdctA mutant was normal for AsIII oxidation and AsIII/SbIII resistance at metalloid concentrations inhibitory to the Δacr3-1 mutant; however, aioBA induction kinetics was significantly phase-shift delayed. Acr3 involvement in AsIII/SbIII resistance is reasonably well understood, but the role of Acr3 and DctA anti-porters in AsIII oxidation and its regulation is unexpected, and suggests that controlled AsIII trafficking across the cytoplasmic membrane is important to a process understood to occur in the periplasm.


Assuntos
Agrobacterium tumefaciens/metabolismo , Arsenitos/metabolismo , Proteínas de Bactérias/genética , Transportadores de Ácidos Dicarboxílicos/metabolismo , Transportadores de Ânions Orgânicos/genética , Agrobacterium tumefaciens/genética , Antimônio/metabolismo , Transporte Biológico/genética , Transportadores de Ácidos Dicarboxílicos/genética , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Malatos/metabolismo , Óperon , Oxirredução
6.
Int J Syst Evol Microbiol ; 54(Pt 6): 2361-2368, 2004 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-15545484

RESUMO

Two moderately thermophilic, Gram-positive, spore-forming bacteria were isolated from different geographical locations and sources; strain GS5-97(T) from a beet sugar factory in Leopoldsdorf, Lower Austria, and strain YNP10 from a geothermally heated soil, Yellowstone National Park, USA. The sequences of their 16S rRNA genes were found to be 99.8% identical, and DNA-DNA hybridization experiments revealed that strains GS5-97(T) and YNP10 share 89.9 mol% similarity to each other, but only 34.3 and 39.2 mol% similarity, respectively, to Geobacillus caldoxylosilyticus DSM 12041(T), which is their closest related type strain. A polyphasic analysis showed that these two isolates were more similar to each other than to other characterized geobacilli. Their DNA G+C content was 43.2 and 42.4 mol%, respectively, and they were identical with respect to many phenotypic features (e.g. T(opt) 55 degrees C; pH(opt) 7.0). Both strains clearly displayed best growth when cultured aerobically. They differed slightly in their cellular fatty acid profiles and polar lipid pattern, and genotypically they could also be distinguished based on randomly amplified polymorphic DNA fingerprints and internal transcribed spacer analysis. Freeze-etching experiments revealed oblique surface layer (S-layer) lattices in both strains, and biochemical analyses of the purified S-layer proteins indicated the occurrence of glycosylation. Based on the properties of these organisms relative to those currently documented for the genus Geobacillus and for the various sister genera in the Bacillus radiation, a novel species is proposed, Geobacillus tepidamans sp. nov., with GS5-97(T) (=ATCC BAA-942(T)=DSM 16325(T)) as the type strain. Strain YNP10 has been deposited in the American Type Culture Collection as ATCC BAA-943.


Assuntos
Bacillaceae/classificação , Bacillaceae/isolamento & purificação , Beta vulgaris/microbiologia , Microbiologia do Solo , Aerobiose , Áustria , Bacillaceae/citologia , Bacillaceae/fisiologia , Proteínas de Bactérias/química , Proteínas de Bactérias/isolamento & purificação , Técnicas de Tipagem Bacteriana , Composição de Bases , Impressões Digitais de DNA , DNA Bacteriano/química , DNA Bacteriano/isolamento & purificação , DNA Ribossômico/química , DNA Ribossômico/isolamento & purificação , DNA Espaçador Ribossômico/análise , Ácidos Graxos/análise , Ácidos Graxos/isolamento & purificação , Genes de RNAr , Violeta Genciana , Temperatura Alta , Concentração de Íons de Hidrogênio , Glicoproteínas de Membrana/química , Glicoproteínas de Membrana/isolamento & purificação , Dados de Sequência Molecular , Noroeste dos Estados Unidos , Hibridização de Ácido Nucleico , Fenazinas , Fosfolipídeos/análise , Fosfolipídeos/isolamento & purificação , Filogenia , Extratos Vegetais , RNA Bacteriano/genética , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Esporos Bacterianos , Temperatura
7.
Dev Cell ; 3(4): 593-603, 2002 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-12408810

RESUMO

Recent data indicate that cystic fibrosis (CF) airway mucus is anaerobic. This suggests that Pseudomonas aeruginosa infection in CF reflects biofilm formation and persistence in an anaerobic environment. P. aeruginosa formed robust anaerobic biofilms, the viability of which requires rhl quorum sensing and nitric oxide (NO) reductase to modulate or prevent accumulation of toxic NO, a byproduct of anaerobic respiration. Proteomic analyses identified an outer membrane protein, OprF, that was upregulated approximately 40-fold under anaerobic versus aerobic conditions. Further, OprF exists in CF mucus, and CF patients raise antisera to OprF. An oprF mutant formed poor anaerobic biofilms, due, in part, to defects in anaerobic respiration. Thus, future investigations of CF pathogenesis and therapy should include a better understanding of anaerobic metabolism and biofilm development by P. aeruginosa.


Assuntos
Biofilmes/crescimento & desenvolvimento , Fibrose Cística/microbiologia , Pseudomonas aeruginosa/fisiologia , Anaerobiose , Fibrose Cística/etiologia , Humanos
8.
Adv Drug Deliv Rev ; 54(11): 1425-43, 2002 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-12458153

RESUMO

Recent evidence indicates that Pseudomonas aeruginosa residing as biofilms in airway mucus of cystic fibrosis (CF) patients is undergoing anaerobic metabolism, a form of growth requiring gene products that are not utilized during aerobic growth. The outer membrane protein, OprF, and the rhl quorum sensing circuit are two previously unrecognized cellular factors that are required for optimal anaerobic biofilm viability. Without OprF, bacteria grow extremely poorly because they lack nitrite reductase activity while lacking rhlR or rhlI forces bacteria to undergo metabolic suicide by overproduction of nitric oxide. Furthermore, anaerobic growth favors maintenance of the mucoid, alginate-overproducing phenotype. Thus, with increasing age of CF patients, mucoid populations predominate, indicating that anaerobic bacteria reside in the inspissated airway mucus. Because many frontline antibiotics used in the treatment of CF airway disease are either ineffective or show reduced efficacy during anaerobic conditions, we propose development of new drugs to combat anaerobic metabolism by P. aeruginosa for more effective treatment of chronic CF lung infections.


Assuntos
Antibacterianos/uso terapêutico , Biofilmes/crescimento & desenvolvimento , Fibrose Cística/microbiologia , Infecções por Pseudomonas/tratamento farmacológico , Pseudomonas aeruginosa/metabolismo , Sistema Respiratório/microbiologia , Alginatos/metabolismo , Anaerobiose , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Doença Crônica , Ácido Glucurônico , Ácidos Hexurônicos , Humanos , Ligases , Muco/microbiologia , Óxido Nítrico/metabolismo , Porinas/metabolismo , Infecções por Pseudomonas/microbiologia , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/fisiologia , Fatores de Transcrição/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA