Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Chromatogr A ; 1337: 140-6, 2014 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-24636558

RESUMO

A set of tryptic peptides was analyzed in reversed-phase liquid chromatography using gradient elution with acetonitrile, methanol, or isopropanol. We used these retention data as training sets to develop retention prediction models of peptides for the three organic eluents used. The coefficients of determination, R(2), between predicted and observed data were approximately 0.95 for all systems. Retention coefficient values of twenty amino acids calculated from a model were utilized to investigate differences in separation selectivity between acetonitrile, methanol, or isopropanol eluents. The experimentally observed difference in separation selectivity appears to be a complex interplay of multiple amino acids, each contributing to a different degree to overall peptide retention. While retention contribution of hydrophilic amino acids was higher in methanol than acetonitrile, peptides containing aromatic amino acids (tyrosine, phenylalanine, tryptophan) exhibit relatively lower retention in methanol compared to acetonitrile. The differences between acetonitrile and isopropanol eluents were less pronounced. We also compared the relative elution strength of the three organic eluents for peptides. The relationship between the elution strength of two solvents is not linear, rather it was best fitted by a cubic polynomial function. Three solvents can be arranged in the order of increasing elution power as methanol

Assuntos
2-Propanol/química , Acetonitrilas/química , Metanol/química , Peptídeos/isolamento & purificação , Aminoácidos/isolamento & purificação , Cromatografia de Fase Reversa , Interações Hidrofóbicas e Hidrofílicas , Solventes
2.
Xenobiotica ; 44(9): 842-8, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24588343

RESUMO

Glucagon-like peptide-1 (GLP-1)(7-36)amide is a 30-amino acid peptide hormone that is secreted from intestinal enteroendocrine L-cells in response to nutrients. GLP-1(7-36)amide possesses potent insulinotropic actions in the augmentation of glucose-dependent insulin secretion. GLP-1(7-36)amide is rapidly metabolized by dipeptidyl peptidase-IV to yield GLP-1(9-36)amide as the principal metabolite. Contrary to the earlier notion that peptide cleavage products of native GLP-1(7-36)amide [including GLP-1(9-36)amide] are pharmacologically inactive, recent studies have demonstrated cardioprotective and insulinomimetic effects with GLP-1(9-36)amide in mice, dogs and humans. In the present work, in vitro metabolism and pharmacokinetic properties of GLP-1(9-36)amide have been characterized in dogs, since this preclinical species has been used as an animal model to demonstrate the in vivo vasodilatory and cardioprotective effects of GLP-1(9-36)amide. A liquid chromatography tandem mass spectrometry assay was developed for the quantitation of the intact peptide in hepatocyte incubations as opposed to a previously reported enzyme-linked immunosorbent assay. Although GLP-1(9-36)amide was resistant to proteolytic cleavage in dog plasma and bovine serum albumin (t1/2>240 min), the peptide was rapidly metabolized in dog hepatocytes with a t1/2 of 110 min. Metabolite identification studies in dog hepatocytes revealed a variety of N-terminus cleavage products, most of which, have also been observed in human and mouse hepatocytes. Proteolysis at the C-terminus was not observed in GLP-1(9-36)amide. Following the administration of a single intravenous bolus dose (20 µg/kg) to male Beagle dogs, GLP-1(9-36)amide exhibited a mean plasma clearance of 15 ml/min/kg and a low steady state distribution volume of 0.05 l/kg, which translated into a short elimination half life of 0.05 h. Following subcutaneous administration of GLP-1(9-36)amide at 50 µg/kg, systemic exposure of GLP-1(9-36)amide as ascertained from maximal plasma concentrations and area under the plasma concentration-time curve from zero to infinity was 44 ng/ml and 32 ng h/ml, respectively. The subcutaneous bioavailability of GLP-1(9-36)amide in dogs was 57%. Our findings raise the possibility that the cardioprotective effects of GLP-1(9-36)amide in the conscious dog model of pacing-induced heart failure might be due, at least in part, to the actions of additional downstream metabolites, which are obtained from proteolytic cleavage of the peptide backbone in the parent compound in the liver.


Assuntos
Cardiotônicos/farmacocinética , Peptídeo 1 Semelhante ao Glucagon/análogos & derivados , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Peptídeos/farmacocinética , Animais , Cardiotônicos/sangue , Cromatografia Líquida , Cães , Peptídeo 1 Semelhante ao Glucagon/sangue , Peptídeo 1 Semelhante ao Glucagon/farmacocinética , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Humanos , Insulina/metabolismo , Secreção de Insulina , Masculino , Camundongos , Peptídeos/sangue , Espectrometria de Massas em Tandem
3.
Drug Metab Dispos ; 41(8): 1470-9, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23653442

RESUMO

4-(3-(Benzyloxy)phenyl)-2-(ethylsulfinyl)-6-(trifluoromethyl)pyrimidine (BETP) represents a novel small-molecule activator of the glucagon-like peptide-1 receptor (GLP-1R), and exhibits glucose-dependent insulin secretion in rats following i.v. (but not oral) administration. To explore the quantitative pharmacology associated with GLP-1R agonism in preclinical species, the in vivo pharmacokinetics of BETP were examined in rats after i.v. and oral dosing. Failure to detect BETP in circulation after oral administration of a 10-mg/kg dose in rats was consistent with the lack of an insulinotropic effect of orally administered BETP in this species. Likewise, systemic concentrations of BETP in the rat upon i.v. administration (1 mg/kg) were minimal (and sporadic). In vitro incubations in bovine serum albumin, plasma, and liver microsomes from rodents and humans indicated a facile degradation of BETP. Failure to detect metabolites in plasma and liver microsomal incubations in the absence of NADP was suggestive of a covalent interaction between BETP and a protein amino acid residue(s) in these matrices. Incubations of BETP with glutathione (GSH) in buffer revealed a rapid nucleophilic displacement of the ethylsulfoxide functionality by GSH to yield adduct M1, which indicated that BETP was intrinsically electrophilic. The structure of M1 was unambiguously identified by comparison of its chromatographic and mass spectral properties with an authentic standard. The GSH conjugate of BETP was also characterized in NADPH- and GSH-supplemented liver microsomes and in plasma samples from the pharmacokinetic studies. Unlike BETP, M1 was inactive as an allosteric modulator of the GLP-1R.


Assuntos
Pirimidinas/química , Receptores de Glucagon/metabolismo , Regulação Alostérica/efeitos dos fármacos , Animais , Células CHO , Cricetinae , Cricetulus , Estabilidade de Medicamentos , Receptor do Peptídeo Semelhante ao Glucagon 1 , Glutationa/química , Humanos , Masculino , Camundongos , Microssomos Hepáticos/metabolismo , Pirimidinas/metabolismo , Pirimidinas/farmacologia , Ratos , Ratos Wistar
4.
Drug Metab Dispos ; 40(6): 1067-75, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22393119

RESUMO

The United States Public Health Service Administration is alerting medical professionals that a substantial percentage of cocaine imported into the United States is adulterated with levamisole, a veterinary pharmaceutical that can cause blood cell disorders such as severe neutropenia and agranulocytosis. Levamisole was previously approved in combination with fluorouracil for the treatment of colon cancer; however, the drug was withdrawn from the U.S. market in 2000 because of the frequent occurrence of agranulocytosis. The detection of autoantibodies such as antithrombin (lupus anticoagulant) and an increased risk of agranulocytosis in patients carrying the human leukocyte antigen B27 genotype suggest that toxicity is immune-mediated. In this perspective, we provide an historical account of the levamisole/cocaine story as it first surfaced in 2008, including a succinct review of levamisole pharmacology, pharmacokinetics, and preclinical/clinical evidence for levamisole-induced agranulocytosis. Based on the available information on levamisole metabolism in humans, we propose that reactive metabolite formation is the rate-limiting step in the etiology of agranulocytosis associated with levamisole, in a manner similar to other drugs (e.g., propylthiouracil, methimazole, captopril, etc.) associated with blood dyscrasias. Finally, considering the toxicity associated with levamisole, we propose that the 2,3,5,6-tetrahydroimidazo[2,1-b]thiazole scaffold found in levamisole be categorized as a new structural alert, which is to be avoided in drug design.


Assuntos
Agranulocitose/induzido quimicamente , Agranulocitose/imunologia , Agranulocitose/metabolismo , Cocaína/metabolismo , Contaminação de Medicamentos , Levamisol/metabolismo , Animais , Cocaína/química , Cocaína/intoxicação , Humanos , Levamisol/química , Levamisol/intoxicação , Estados Unidos , United States Public Health Service/legislação & jurisprudência , Drogas Veterinárias/química , Drogas Veterinárias/metabolismo , Drogas Veterinárias/intoxicação
5.
Chem Res Toxicol ; 24(2): 269-78, 2011 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-21288051

RESUMO

Isopropyl 9-anti-[5-cyano-6-(2-methyl-pyridin-3-yloxy)-pyrimidin-4-yloxy]-3-oxa-7-aza-bicyclo[3.3.1]nonane-7-carboxylate (1) represents a prototypic compound from a lead chemical series of G protein-coupled receptor 119 agonists, intended for treatment of type 2 diabetes. When compound 1 was incubated with NADPH-supplemented human liver microsomes in the presence of glutathione, two thioether conjugates M4-1 and M5-1 were observed. Omission of NADPH from the microsomal incubations prevented the formation of M5-1 but not M4-1. The formation of M4-1 was also discerned in incubations of 1 and glutathione with human liver cytosol, partially purified glutathione transferase, and in phosphate buffer at pH 7.4. M4-1 was isolated, and its structure ascertained from LC-MS/MS and NMR analysis. The mass spectral and NMR data suggested that M4-1 was obtained from a nucleophilic displacement of the 6-(2-methylpyridin-3-yloxy) group in 1 by glutathione. In addition, mass spectral studies revealed that M5-1 was derived from an analogous displacement reaction on a monohydroxylated metabolite of 1; the regiochemistry of hydroxylation was established to be on the isopropyl group. Of great interest were the findings that replacement of the 5-cyano group in 1 with a 5-methyl group resulted in 2, which was practically inert toward reaction with glutathione. This observation suggests that the electron-withdrawing potential of the C5 cyano group serves to increase the electrophilicity of the C6 carbon (via stabilization of the transition state) and favors reaction with the nucleophilic thiol. The mechanistic insights gained from these studies should assist medicinal chemistry efforts toward the design of analogs that retain primary pharmacology but are latent toward reaction with biological nucleophiles, thus mitigating the potential for toxicological outcome due to adduction with glutathione or proteins.


Assuntos
Glutationa/metabolismo , Microssomos Hepáticos/efeitos dos fármacos , Microssomos Hepáticos/metabolismo , Pirimidinas/metabolismo , Receptores Acoplados a Proteínas G/agonistas , Animais , Diabetes Mellitus Tipo 2/tratamento farmacológico , Glutationa/química , Cavalos , Humanos , Espectroscopia de Ressonância Magnética , Espectrometria de Massas , Estrutura Molecular , Pirimidinas/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA