Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Med Phys ; 51(6): 4423-4433, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38695760

RESUMO

BACKGROUND: The newly available ZAP-X stereotactic radiosurgical system is designed for the treatment of intracranial lesions, with several unique features that include a self-shielding, gyroscopic gantry, wheel collimation, non-orthogonal kV imaging, short source-axis distance, and low-energy megavoltage beam. Systematic characterization of its radiation as well as other properties is imperative to ensure its safe and effective clinical application. PURPOSE: To accurately determine the radiation output of the ZAP-X with a special focus on the smaller diameter cones and an aim to provide useful recommendations on quantification of small field dosimetry. METHODS: Six different types of detectors were used to measure relative output factors at field sizes ranging from 4 to 25 mm, including the PTW microSilicon and microdiamond diodes, Exradin W2 plastic scintillator, Exradin A16 and A1SL ionization chambers, and the alanine dosimeter. The 25 mm cone served as the reference field size. Absolute dose was determined with both TG-51-based dosimetry using a calibrated PTW Semiflex ion chamber and measurements using alanine dosimeters. RESULTS: The average radiation output factors (maximum deviation from the average) measured with the microDiamond, microSilicon, and W2 detectors were: for the 4 mm cone, 0.741 (1.0%); for the 5 mm cone: 0.817 (1.0%); for the 7.5 mm cone: 0.908 (1.0%); for the 10 mm cone: 0.946 (0.4%); for the 12.5 mm cone: 0.964 (0.2%); for the 15 mm cone: 0.976 (0.1%); for the 20 mm cone: 0.990 (0.1%). For field sizes larger than 10 mm, the A1SL and A16 micro-chambers also yielded consistent output factors within 1.5% of those obtained using the microSilicon, microdiamond, and W2 detectors. The absolute dose measurement obtained with alanine was within 1.2%, consistent with combined uncertainties, compared to the PTW Semiflex chamber for the 25 mm reference cone. CONCLUSION: For field sizes less than 10 mm, the microSilicon diode, microDiamond detector, and W2 scintillator are suitable devices for accurate small field dosimetry of the ZAP-X system. For larger fields, the A1SL and A16 micro-chambers can also be used. Furthermore, alanine dosimetry can be an accurate verification of reference and absolute dose typically measured with ion chambers. Use of multiple suitable detectors and uncertainty analyses were recommended for reliable determination of small field radiation outputs.


Assuntos
Radiometria , Radiocirurgia , Radiocirurgia/instrumentação , Radiometria/instrumentação , Proteção Radiológica/instrumentação , Padrões de Referência
2.
Med Phys ; 50(10): 6543-6553, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37287315

RESUMO

BACKGROUND: Electron synchrotrons produce x-ray beams with dose rates orders of magnitude greater than conventional x-ray tubes and with beam sizes on the order of a few millimeters. These characteristics put severe challenges on current dosimeters to accurately realize absorbed dose or air kerma. PURPOSE: This work seeks to investigate the suitability of a novel aluminum-based calorimeter to determine absorbed dose to water with an uncertainty significantly smaller than currently possible with conventional detectors. A lower uncertainty in the determination of absolute dose rate would impact both therapeutic applications of synchrotron-produced x-ray beams and research investigations. METHODS: A vacuum-based calorimeter prototype with an aluminum core was built, matching the beam profile of the 140 keV monochromatic x-ray beam, produced by the Canadian Light Source Biomedical Imaging and Therapy beamline. The choice of material and overall calorimeter design was optimized using FEM thermal modeling software while Monte Carlo radiation transport simulations were used to model the impact of interactions of the radiation beam with the detector components. RESULTS: Corrections for both the thermal conduction and radiation transport effects were of the order of 3% and the simplicity of the geometry, combined with the monochromatic nature of the incident x-ray beam, meant that the uncertainty in each correction was ≤0.5%. The calorimeter performance was found to be repeatable over multiple irradiations of 1 Gy at the ± 0.6% level, and no systematic dependence on environmental effects or total dose was observed. CONCLUSION: The combined standard uncertainty in the determination of absorbed dose to aluminum was estimated to be 0.8%, indicating that absorbed dose to water, the ultimate quantity of interest, could be determined with an uncertainty on the order of 1%. This value is an improvement over current techniques used for synchrotron dosimetry and comparable with the state-of-the art for conventional kV x-ray dosimetry.


Assuntos
Alumínio , Síncrotrons , Raios X , Canadá , Radiometria/métodos , Água , Método de Monte Carlo
3.
Int J Radiat Oncol Biol Phys ; 116(2): 305-313, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-36724859

RESUMO

PURPOSE: In 2021, the Canadian Organization of Medical Physicists (COMP) conducted its first equity, diversity, and inclusion Climate Survey. The membership's experiences of inclusion, belonging, professional opportunities, discrimination, microaggressions, racism, and harassment in their professional lives are presented. METHODS AND MATERIALS: The ethics-reviewed survey was distributed in English and French to full members of COMP. Participants responded to questions covering demographics and professional climate. Simple descriptive statistics were used to measure frequency of responses. Data pertaining to impressions on the climate within the profession were compared using nonparametric statistical tests. RESULTS: The survey was distributed to 649 eligible members; 243 (37%) responded, and 214 (33%) provided full response sets. From the full response sets, findings showed that in general, age, highest academic degree, and racial and ethnic distribution trends of medical physicists were comparable with previously collected data and/or the Canadian population. The experiences of respondents relating to harassment in the workplace and perception of climate are reported and provide a useful benchmark for future assessments of interventions or training programs. In the workplace, fewer women (58%) reported having professional opportunities compared with men (70%). The survey also found that 17% of respondents (most of whom were women) directly or indirectly experienced sexual harassment in the workplace within the past 5 years. Finding that 23% of survey respondents identified as having a disability is a valuable reminder that accommodations in the workplace are necessary for more than 1 in every 5 medical physicists working in clinics. CONCLUSIONS: This study provided insight into the diversity and experiences of medical physicists in Canada. The majority of respondents had positive perceptions about their professional environment. However, equity-lacking groups were identified, such as women, underrepresented minorities, Indigenous peoples, and people with visible and invisible disabilities.


Assuntos
Diversidade, Equidade, Inclusão , Assédio Sexual , Masculino , Humanos , Feminino , Canadá , Inquéritos e Questionários , Atitude
4.
Phys Med Biol ; 68(1)2022 12 29.
Artigo em Inglês | MEDLINE | ID: mdl-36579808

RESUMO

Objective. While the accuracy of dose calculations in water with Acuros XB is well established, experimental validation of dose in bone is limited. Acuros XB reports both dose-to-medium and dose-to-water, and these values differ in bone, but there are no reports of measurements of validation in bone. This work compares Acuros XB calculations to measurements of absolute dose in aluminum (medium similar to bone). The validity of using selected relative dosimeters in aluminum is also investigated.Approach. A calorimeter with an aluminum core embedded in an aluminum phantom was selected as bone surrogate for the measurement of absolute dose. Matching the medium of the core to the medium of the phantom allowed eliminating the calculation of the conversion between media. The dose was measured at the fixed depth of 3.3 cm in aluminum (∼9 g·cm-2) with 6X, 10X, 6FFF and 10FFF photon beams from a TrueBeam Varian linac. In addition, experimental cross-calibration between water and aluminum was performed for an IBA CC13 ionization chamber, a PTW microDiamond and EBT3 Gafchromic film.Main results. Calculations with Acuros XB dose-to-medium in aluminum differed from the calorimetry data by -2.8% to -3.5%, depending on the beam. Use of dose-to-water would have resulted in about 39% discrepancy. The cross calibration coefficient between water and aluminum yielded values of about 0.87 for the CC13 chamber, 0.91 for the microDiamond, and 0.88 for the film, and independent of the beam within about ±1%.Significance. It was demonstrated the value of the dose-to-medium in aluminum (surrogate of bone) computed with Acuros XB is close to the value of the absolute dose measured with a calorimeter, and there is a significant discrepancy when dose-to-water is used instead. The use of an ionization chamber, a microDiamond and Gafchromic film in aluminum required a considerable correction from calibration in water.


Assuntos
Alumínio , Radiometria , Radiometria/métodos , Dosagem Radioterapêutica , Algoritmos , Planejamento da Radioterapia Assistida por Computador/métodos , Imagens de Fantasmas , Água
5.
Radiat Res ; 198(1): 40-56, 2022 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-35391488

RESUMO

Clonogenic assays are the gold standard for measuring cell clonogenic survival and enable quantification of a cell line's radiosensitivity through the calculation of the surviving fraction, the ratio of cell clusters (colonies) formed after radiation exposure compared to the number formed without exposure. Such studies regularly utilize Cs-137 irradiators. While uncertainties for specific procedural aspects have been described previously, a comprehensive review has not been completed. We therefore quantified uncertainties associated with clonogenic assays performed using a Cs-137 Shepherd irradiator, and a recently established brachytherapy afterloader in vitro radiation delivery apparatus (BAIRDA), through a series of experiments and a literature review. The clonogenic assay is subject to uncertainties that affect the determination of the surviving fraction (e.g., accuracy of the number of cells seeded, potential effects of hypothermia, and the threshold number of cells for a cluster to be identified as a colony). Furthermore, dose delivery uncertainties related to both the Cs-137 irradiator and BAIRDA were also quantified. The combined standard (k = 1) uncertainty was ± 6.0% in the surviving fraction for the Cs-137 irradiator (±6.3% for BAIRDA), up to ± 2.2% in the dose delivered by the Cs-137 irradiator, and up to ± 4.3% in the dose delivered by BAIRDA. The largest individual uncertainties were associated with the number of cells seeded on a plate (3.4%) and inter-observer variability in counting (4.1%), suggesting that effective reduction of uncertainties in the conduct of the clonogenic assay may provide the greatest relief on the uncertainty budget. Finally, measurable impact on experimental findings was assessed by applying this uncertainty to clonogenic assays of SW756 cells using either a Cs-137 irradiator or BAIRDA, introducing a maximum shift in the reported radiobiological parameters α/ß and T1/2 of 0.3 Gy and 0.4 h, respectively, while the 95% confidence interval increased by 0.5 Gy and decreased by 0.4 h, respectively. Though the overall impact on radiobiological parameter estimation was small, the individual uncertainties could have a significant influence in other applications of in vitro experiments in radiation biology. Hence, better understanding of the uncertainties associated with both clonogenic assays and the radiation source used can improve the accuracy of experimental analysis and reproducibility of the results.


Assuntos
Radioisótopos de Césio , Radioisótopos de Irídio , Tolerância a Radiação , Reprodutibilidade dos Testes , Incerteza
6.
Phys Med ; 80: 134-150, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33181444

RESUMO

UHDpulse - Metrology for advanced radiotherapy using particle beams with ultra-high pulse dose rates is a recently started European Joint Research Project with the aim to develop and improve dosimetry standards for FLASH radiotherapy, very high energy electron (VHEE) radiotherapy and laser-driven medical accelerators. This paper gives a short overview about the current state of developments of radiotherapy with FLASH electrons and protons, very high energy electrons as well as laser-driven particles and the related challenges in dosimetry due to the ultra-high dose rate during the short radiation pulses. We summarize the objectives and plans of the UHDpulse project and present the 16 participating partners.


Assuntos
Elétrons , Radiometria , Lasers , Aceleradores de Partículas , Prótons , Radioterapia , Dosagem Radioterapêutica , Radioterapia de Alta Energia
7.
Med Phys ; 43(2): 783-95, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26843241

RESUMO

PURPOSE: Respiratory motion can lead to treatment errors in the delivery of radiotherapy treatments. Respiratory gating can assist in better conforming the beam delivery to the target volume. We present a study of the technical aspects of a real time positron emission tracking system for potential use in gated radiotherapy. METHODS: The tracking system, called PeTrack, uses implanted positron emission markers and position sensitive gamma ray detectors to track breathing motion in real time. PeTrack uses an expectation-maximization algorithm to track the motion of fiducial markers. A normalized least mean squares adaptive filter predicts the location of the markers a short time ahead to account for system response latency. The precision and data collection efficiency of a prototype PeTrack system were measured under conditions simulating gated radiotherapy. The lung insert of a thorax phantom was translated in the inferior-superior direction with regular sinusoidal motion and simulated patient breathing motion (maximum amplitude of motion ±10 mm, period 4 s). The system tracked the motion of a (22)Na fiducial marker (0.34 MBq) embedded in the lung insert every 0.2 s. The position of the was marker was predicted 0.2 s ahead. For sinusoidal motion, the equation used to model the motion was fitted to the data. The precision of the tracking was estimated as the standard deviation of the residuals. Software was also developed to communicate with a Linac and toggle beam delivery. In a separate experiment involving a Linac, 500 monitor units of radiation were delivered to the phantom with a 3 × 3 cm photon beam and with 6 and 10 MV accelerating potential. Radiochromic films were inserted in the phantom to measure spatial dose distribution. In this experiment, the period of motion was set to 60 s to account for beam turn-on latency. The beam was turned off when the marker moved outside of a 5-mm gating window. RESULTS: The precision of the tracking in the IS direction was 0.53 mm for a sinusoidally moving target, with an average count rate ∼250 cps. The average prediction error was 1.1 ± 0.6 mm when the marker moved according to irregular patient breathing motion. Across all beam deliveries during the radiochromic film measurements, the average prediction error was 0.8 ± 0.5 mm. The maximum error was 2.5 mm and the 95th percentile error was 1.5 mm. Clear improvement of the dose distribution was observed between gated and nongated deliveries. The full-width at halfmaximum of the dose profiles of gated deliveries differed by 3 mm or less than the static reference dose distribution. Monitoring of the beam on/off times showed synchronization with the location of the marker within the latency of the system. CONCLUSIONS: PeTrack can track the motion of internal fiducial positron emission markers with submillimeter precision. The system can be used to gate the delivery of a Linac beam based on the position of a moving fiducial marker. This highlights the potential of the system for use in respiratory-gated radiotherapy.


Assuntos
Neoplasias Pulmonares/radioterapia , Radioterapia Assistida por Computador/métodos , Respiração , Algoritmos , Humanos , Neoplasias Pulmonares/fisiopatologia , Movimento , Aceleradores de Partículas , Imagens de Fantasmas , Dosagem Radioterapêutica , Radioterapia Assistida por Computador/instrumentação , Software
8.
Med Phys ; 42(11): 6357-68, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26520727

RESUMO

PURPOSE: In this work, the authors describe an electron sealed water calorimeter (ESWcal) designed to directly measure absorbed dose to water in clinical electron beams and its use to derive electron beam quality conversion factors for two ionization chamber types. METHODS: A functioning calorimeter prototype was constructed in-house and used to obtain reproducible measurements in clinical accelerator-based 6, 9, 12, 16, and 20 MeV electron beams. Corrections for the radiation field perturbation due to the presence of the glass calorimeter vessel were calculated using Monte Carlo (MC) simulations. The conductive heat transfer due to dose gradients and nonwater materials was also accounted for using a commercial finite element method software package. RESULTS: The relative combined standard uncertainty on the ESWcal dose was estimated to be 0.50% for the 9-20 MeV beams and 1.00% for the 6 MeV beam, demonstrating that the development of a water calorimeter-based standard for electron beams over such a wide range of clinically relevant energies is feasible. The largest contributor to the uncertainty was the positioning (Type A, 0.10%-0.40%) and its influence on the perturbation correction (Type B, 0.10%-0.60%). As a preliminary validation, measurements performed with the ESWcal in a 6 MV photon beam were directly compared to results derived from the National Research Council of Canada (NRC) photon beam standard water calorimeter. These two independent devices were shown to agree well within the 0.43% combined relative uncertainty of the ESWcal for this beam type and quality. Absorbed dose electron beam quality conversion factors were measured using the ESWcal for the Exradin A12 and PTW Roos ionization chambers. The photon-electron conversion factor, kecal, for the A12 was also experimentally determined. Nonstatistically significant differences of up to 0.7% were found when compared to the calculation-based factors listed in the AAPM's TG-51 protocol. General agreement between the relative electron energy dependence of the PTW Roos data measured in this work and a recent MC-based study are also shown. CONCLUSIONS: This is the first time that water calorimetry has been successfully used to measure electron beam quality conversion factors for energies as low as 6 MeV (R50=2.25 cm).


Assuntos
Absorção de Radiação , Calorimetria/instrumentação , Elétrons/uso terapêutico , Radiometria/instrumentação , Radioterapia de Alta Energia/instrumentação , Água/química , Algoritmos , Calorimetria/métodos , Simulação por Computador , Desenho de Equipamento , Análise de Falha de Equipamento , Modelos Químicos , Radiometria/métodos , Radioterapia de Alta Energia/métodos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
10.
Phys Med Biol ; 60(11): 4481-95, 2015 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-25988983

RESUMO

The aim of this project was to develop an absorbed dose to water primary standard for Ir-192 brachytherapy based on the Fricke dosimeter. To achieve this within the framework of the existing TG-43 protocol, a determination of the absorbed dose to water at the reference position, D(r0,θ0), was undertaken. Prior to this investigation, the radiation chemical yield of the ferric ions (G-value) at the Ir-192 equivalent photon energy (0.380 MeV) was established by interpolating between G-values obtained for Co-60 and 250 kV x-rays.An irradiation geometry was developed with a cylindrical holder to contain the Fricke solution and allow irradiations in a water phantom to be conducted using a standard Nucletron microSelectron V2 HDR Ir-192 afterloader. Once the geometry and holder were optimized, the dose obtained with the Fricke system was compared to the standard method used in North America, based on air-kerma strength.Initial investigations focused on reproducible positioning of the ring-shaped holder for the Fricke solution with respect to the Ir-192 source and obtaining an acceptable type A uncertainty in the optical density measurements required to yield the absorbed dose. Source positioning was found to be reproducible to better than 0.3 mm, and a careful cleaning and control procedure reduced the variation in optical density reading due to contamination of the Fricke solution by the PMMA holder. It was found that fewer than 10 irradiations were required to yield a type A standard uncertainty of less than 0.5%.Correction factors to take account of the non-water components of the geometry and the volume averaging effect of the Fricke solution volume were obtained from Monte Carlo calculations. A sensitivity analysis showed that the dependence on the input data used (e.g. interaction cross-sections) was small with a type B uncertainty for these corrections estimated to be 0.2%.The combined standard uncertainty in the determination of absorbed dose to water at the reference position for TG-43 (1 cm from the source on the transverse axis, in a water phantom) was estimated to be 0.8% with the dominant uncertainty coming from the determination of the G-value. A comparison with absorbed dose to water obtained using the product of air-kerma strength and the dose rate constant gave agreement within 1.5% for three different Ir-192 sources, which is within the combined standard uncertainties of the two methods.


Assuntos
Braquiterapia/métodos , Compostos Ferrosos/efeitos da radiação , Radioisótopos de Irídio/uso terapêutico , Radiometria/normas , Soluções/efeitos da radiação , Método de Monte Carlo , Imagens de Fantasmas , Radiometria/instrumentação , Radiometria/métodos , Dosagem Radioterapêutica , Água
11.
Med Phys ; 38(10): 5441-7, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21992363

RESUMO

PURPOSE: This work presents the experimental extraction of the perturbation factor in megavoltage electron beams for three models of silicon diodes (IBA Dosimetry, EFD and SFD, and the PTW 60012 unshielded) using a plastic scintillation detector (PSD). METHODS: The authors used a single scanning PSD mounted on a high-precision scanning tank to measure depth-dose curves in 6-, 12-, and 18-MeV clinical electron beams. They also measured depth-dose curves using the IBA Dosimetry, EFD and SFD, and the PTW 60012 unshielded diodes. The authors used the depth-dose curves measured with the PSD as a perturbation-free reference to extract the perturbation factors of the diodes. RESULTS: The authors found that the perturbation factors for the diodes increased substantially with depth, especially for low-energy electron beams. The experimental results show the same trend as published Monte Carlo simulation results for the EFD diode; however, the perturbations measured experimentally were greater. They found that using an effective point of measurement (EPOM) placed slightly away from the source reduced the variation of perturbation factors with depth and that the optimal EPOM appears to be energy dependent. CONCLUSIONS: The manufacturer recommended EPOM appears to be incorrect at low electron energy (6 MeV). In addition, the perturbation factors for diodes may be greater than predicted by Monte Carlo simulations.


Assuntos
Radiometria/métodos , Contagem de Cintilação/métodos , Silício/química , Algoritmos , Simulação por Computador , Relação Dose-Resposta à Radiação , Elétrons , Humanos , Método de Monte Carlo , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador/métodos , Radioterapia de Alta Energia/métodos , Reprodutibilidade dos Testes
12.
Med Phys ; 37(8): 4331-42, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20879593

RESUMO

PURPOSE: This work presents the experimental extraction of the overall perturbation factor PQ in megavoltage electron beams for NACP-02 and Roos parallel-plate ionization chambers using a plastic scintillation detector (PSD). METHODS: The authors used a single scanning PSD mounted on a high-precision scanning tank to measure depth-dose curves in 6, 12, and 18 MeV clinical electron beams. The authors also measured depth-dose curves using the NACP-02 and PTW Roos chambers. RESULTS: The authors found that the perturbation factors for the NACP-02 and Roos chambers increased substantially with depth, especially for low-energy electron beams. The experimental results were in good agreement with the results of Monte Carlo simulations reported by other investigators. The authors also found that using an effective point of measurement (EPOM) placed inside the air cavity reduced the variation of perturbation factors with depth and that the optimal EPOM appears to be energy dependent. CONCLUSIONS: A PSD can be used to experimentally extract perturbation factors for ionization chambers. The dosimetry protocol recommendations indicating that the point of measurement be placed on the inside face of the front window appear to be incorrect for parallel-plate chambers and result in errors in the R50 of approximately 0.4 mm at 6 MeV, 1.0 mm at 12 MeV, and 1.2 mm at 18 MeV.


Assuntos
Plásticos/efeitos da radiação , Radiometria/instrumentação , Radioterapia Conformacional/instrumentação , Contagem de Cintilação/instrumentação , Análise de Falha de Equipamento/instrumentação , Dosagem Radioterapêutica , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
14.
Med Phys ; 36(10): 4577-91, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19928089

RESUMO

PURPOSE: The purposes of this study are to improve the accuracy of source and geometry parameters used in the simulation of large electron fields from a clinical linear accelerator and to evaluate improvement in the accuracy of the calculated dose distributions. METHODS: The monitor chamber and scattering foils of a clinical machine not in clinical service were removed for direct measurement of component geometry. Dose distributions were measured at various stages of reassembly, reducing the number of geometry variables in the simulation. The measured spot position and beam angle were found to vary with the beam energy. A magnetic field from the bending magnet was found between the exit window and the secondary collimators of sufficient strength to deflect electrons 1 cm off the beam axis at 100 cm from the exit window. The exit window was 0.05 cm thicker than manufacturer's specification, with over half of the increased thickness due to water pressure in the channel used to cool the window. Dose distributions were calculated with Monte Carlo simulation of the treatment head and water phantom using EGSnrc, a code benchmarked at radiotherapy energies for electron scatter and bremsstrahlung production, both critical to the simulation. The secondary scattering foil and monitor chamber offset from the collimator rotation axis were allowed to vary with the beam energy in the simulation to accommodate the deflection of the beam by the magnetic field, which was not simulated. RESULTS: The energy varied linearly with bending magnet current to within 1.4% from 6.7 to 19.6 MeV, the bending magnet beginning to saturate at the highest beam energy. The range in secondary foil offset used to account for the magnetic field was 0.09 cm crossplane and 0.15 cm inplane, the range in monitor chamber offset was 0.14 cm crossplane and 0.07 cm inplane. A 1.5%/0.09 cm match or better was obtained to measured depth dose curves. Profiles measured at the depth of maximum dose matched the simulated profiles to 2.6% or better at doses of 80% or more of the dose on the central axis. The profiles along the direction of MLC motion agreed to within 0.16 cm at the edge of the field. There remained a mismatch for the lower beam energies at the edge of the profile that ran parallel to the direction of jaw motion of up to 1.4 cm for the 6 MeV beam, attributed to the MLC support block at the periphery of the field left out of the simulation and to beam deflection by the magnetic field. The possibility of using these results to perform accurate simulation without disassembly is discussed. Phase-space files were made available for benchmarking beam models and other purposes. CONCLUSIONS: The match to measured large field dose distributions from clinical electron beams with Monte Carlo simulation was improved with more accurate source details and geometry details closer to manufacturer's specification than previously achieved.


Assuntos
Aceleradores de Partículas/instrumentação , Radiometria/métodos , Radioterapia Conformacional/instrumentação , Transdutores , Elétrons/uso terapêutico , Desenho de Equipamento , Análise de Falha de Equipamento , Dosagem Radioterapêutica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA