Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Continuum (Minneap Minn) ; 30(1): 99-118, 2024 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-38330474

RESUMO

OBJECTIVE: This article discusses the diagnostic approach to patients with suspected neoplasms of the spinal cord and reviews the most common primary and metastatic spinal neoplasms and their presentations. LATEST DEVELOPMENTS: Neoplasms of the spinal cord are rare entities that can involve the spinal cord parenchyma, the dura and leptomeninges, or the extradural space. The most common intramedullary spinal cord neoplasms are primary spinal cord tumors, including ependymomas, pilocytic astrocytomas, and diffuse midline gliomas. The most common primary neoplasms of the spine are intradural extramedullary spinal meningiomas, whereas primary neoplasms of the leptomeninges are rare. Advances in molecular characterization of spinal cord tumors and recent clinical trials of these rare entities are expanding the repertoire of systemic therapy options for primary spinal cord neoplasms. Metastases to the spine most often affect the extradural space. Metastatic epidural spinal cord compression is a neurologic emergency that requires a rapid, multidisciplinary response to preserve neurologic function. ESSENTIAL POINTS: Neurologists should understand the diagnostic approach to neoplasms of the spinal cord. Knowledge of the most common spinal cord neoplasms will allow for appropriate management and optimal patient care.


Assuntos
Astrocitoma , Neoplasias Meníngeas , Neoplasias da Medula Espinal , Neoplasias da Coluna Vertebral , Humanos , Neoplasias da Medula Espinal/diagnóstico por imagem , Neoplasias da Medula Espinal/terapia , Medula Espinal/patologia
2.
Clin Cancer Res ; 30(7): 1327-1337, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38252427

RESUMO

PURPOSE: Adverse clinical events cause significant morbidity in patients with GBM (GBM). We examined whether genomic alterations were associated with AE (AE) in patients with GBM. EXPERIMENTAL DESIGN: We identified adults with histologically confirmed IDH-wild-type GBM with targeted next-generation sequencing (OncoPanel) at Dana Farber Cancer Institute from 2013 to 2019. Seizure at presentation, lymphopenia, thromboembolic events, pseudoprogression, and early progression (within 6 months of diagnosis) were identified as AE. The biologic function of genetic variants was categorized as loss-of-function (LoF), no change in function, or gain-of-function (GoF) using a somatic tumor mutation knowledge base (OncoKB) and consensus protein function predictions. Associations between functional genomic alterations and AE were examined using univariate logistic regressions and multivariable regressions adjusted for additional clinical predictors. RESULTS: Our study included 470 patients diagnosed with GBM who met the study criteria. We focused on 105 genes that had sequencing data available for ≥ 90% of the patients and were altered in ≥10% of the cohort. Following false-discovery rate (FDR) correction and multivariable adjustment, the TP53, RB1, IGF1R, and DIS3 LoF alterations were associated with lower odds of seizures, while EGFR, SMARCA4, GNA11, BRD4, and TCF3 GoF and SETD2 LoF alterations were associated with higher odds of seizures. For all other AE of interest, no significant associations were found with genomic alterations following FDR correction. CONCLUSIONS: Genomic biomarkers based on functional variant analysis of a routine clinical panel may help identify AE in GBM, particularly seizures. Identifying these risk factors could improve the management of patients through better supportive care and consideration of prophylactic therapies.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Adulto , Humanos , Glioblastoma/genética , Glioblastoma/patologia , Proteínas Nucleares/genética , Fatores de Transcrição/genética , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Genômica , Convulsões/genética , Mutação , DNA Helicases/genética , Proteínas que Contêm Bromodomínio , Proteínas de Ciclo Celular/genética
3.
Neuro Oncol ; 26(4): 596-608, 2024 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-38071654

RESUMO

Despite major strides in cancer research and therapy, these advances have not been equitable across race and ethnicity. Historically marginalized groups (HMG) are more likely to have inadequate preventive screening, increased delays in diagnosis, and poor representation in clinical trials. Notably, Black, Hispanic, and Indigenous people represent 30% of the population but only 9% of oncology clinical trial participants. As a result, HMGs lack equitable access to novel therapies, contradicting the principle of distributive justice, as enshrined in the Belmont report, which demands the equitable selection of subjects in research involving human subjects. The lack of clinical trial diversity also leads to low generalizability and potentially harmful medical practices. Specifically, patients with brain cancer face unique barriers to clinical trial enrollment and completion due to disease-specific neurologic and treatment-induced conditions. Collectively, the intersection of these disease-specific conditions with social determinants of health fosters a lack of diversity in clinical trials. To ameliorate this disparity in neuro-oncology clinical trial participation, we present interventions focused on improving engagement of HMGs. Proposals range from inclusive trial design, decreasing barriers to care, expanding trial eligibility, access to tumor profiling for personalized medical trials, setting reasonable metrics and goals for accrual, working with patient community stakeholders, diversifying the neuro-oncology workforce, and development of tools to overcome biases with options to incentivize equity. The diversification of participation amongst neuro-oncology clinical trials is imperative. Equitable access and inclusion of HMG patients with brain tumors will not only enhance research discoveries but will also improve patient care.


Assuntos
Neoplasias Encefálicas , Humanos , Neoplasias Encefálicas/terapia , Oncologia , Etnicidade
4.
Clin Transl Radiat Oncol ; 44: 100697, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38046107

RESUMO

Introduction and background: While recurrent glioblastoma patients are often treated with re-irradiation, there is limited data on the use of re-irradiation in the setting of bevacizumab (BEV), temozolomide (TMZ) re-challenge, or immune checkpoint inhibition (ICI). We describe target delineation in patients with prior anti-angiogenic therapy, assess safety and efficacy of re-irradiation, and evaluate patterns of recurrence. Materials and methods: Patients with a histologically confirmed diagnosis of glioblastoma treated at a single institution between 2013 and 2021 with re-irradiation were included. Tumor, treatment and clinical data were collected. Logistic and Cox regression analysis were used for statistical analysis. Results: One hundred and seventeen recurrent glioblastoma patients were identified, receiving 129 courses of re-irradiation. In 66 % (85/129) of cases, patients had prior BEV. In the 80 patients (62 %) with available re-irradiation plans, 20 (25 %) had all T2/FLAIR abnormality included in the gross tumor volume (GTV). Median overall survival (OS) for the cohort was 7.3 months, and median progression-free survival (PFS) was 3.6 months. Acute CTCAE grade ≥ 3 toxicity occurred in 8 % of cases. Concurrent use of TMZ or ICI was not associated with improved OS nor PFS. On multivariable analysis, higher KPS was significantly associated with longer OS (p < 0.01). On subgroup analysis, patients with prior BEV had significantly more marginal recurrences than those without (26 % vs. 13 %, p < 0.01). Conclusion: Re-irradiation can be safely employed in recurrent glioblastoma patients. Marginal recurrence was more frequent in patients with prior BEV, suggesting a need to consider more inclusive treatment volumes incorporating T2/FLAIR abnormality.

5.
J Clin Oncol ; 41(36): 5524-5535, 2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-37722087

RESUMO

PURPOSE: The Individualized Screening Trial of Innovative Glioblastoma Therapy (INSIGhT) is a phase II platform trial that uses response adaptive randomization and genomic profiling to efficiently identify novel therapies for phase III testing. Three initial experimental arms (abemaciclib [a cyclin-dependent kinase [CDK]4/6 inhibitor], neratinib [an epidermal growth factor receptor [EGFR]/human epidermal growth factor receptor 2 inhibitor], and CC-115 [a deoxyribonucleic acid-dependent protein kinase/mammalian target of rapamycin inhibitor]) were simultaneously evaluated against a common control arm. We report the results for each arm and examine the feasibility and conduct of the adaptive platform design. PATIENTS AND METHODS: Patients with newly diagnosed O6-methylguanine-DNA methyltransferase-unmethylated glioblastoma were eligible if they had tumor genotyping to identify prespecified biomarker subpopulations of dominant glioblastoma signaling pathways (EGFR, phosphatidylinositol 3-kinase, and CDK). Initial random assignment was 1:1:1:1 between control (radiation therapy and temozolomide) and the experimental arms. Subsequent Bayesian adaptive randomization was incorporated on the basis of biomarker-specific progression-free survival (PFS) data. The primary end point was overall survival (OS), and one-sided P values are reported. The trial is registered with ClinicalTrials.gov (identifier: NCT02977780). RESULTS: Two hundred thirty-seven patients were treated (71 control; 73 abemaciclib; 81 neratinib; 12 CC-115) in years 2017-2021. Abemaciclib and neratinib were well tolerated, but CC-115 was associated with ≥ grade 3 treatment-related toxicity in 58% of patients. PFS was significantly longer with abemaciclib (hazard ratio [HR], 0.72; 95% CI, 0.49 to 1.06; one-sided P = .046) and neratinib (HR, 0.72; 95% CI, 0.50 to 1.02; one-sided P = .033) relative to the control arm but there was no PFS benefit with CC-115 (one-sided P = .523). None of the experimental therapies demonstrated a significant OS benefit (P > .05). CONCLUSION: The INSIGhT design enabled efficient simultaneous testing of three experimental agents using a shared control arm and adaptive randomization. Two investigational arms had superior PFS compared with the control arm, but none demonstrated an OS benefit. The INSIGhT design may promote improved and more efficient therapeutic discovery in glioblastoma. New arms have been added to the trial.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Humanos , Glioblastoma/patologia , Distribuição Aleatória , Teorema de Bayes , Neoplasias Encefálicas/terapia , Receptores ErbB/genética , Biomarcadores
6.
8.
Neuro Oncol ; 24(7): 1140-1149, 2022 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-34878541

RESUMO

BACKGROUND: Targeted gene NGS testing is available through many academic institutions and commercial entities and is increasingly incorporated in practice guidelines for glioblastoma (GBM). This single-center retrospective study aimed to evaluate the clinical utility of incorporating NGS results in the management of GBM patients at a clinical trials-focused academic center. METHODS: We identified 1011 consecutive adult patients with pathologically confirmed GBM (IDHwt or IDHmut) who had somatic tumor sequencing (Oncopanel, ~500 cancer gene panel) at DFCI from 2013-2019. Clinical records of all IDHwt GBM patients were reviewed to capture clinical trial enrollment and off-label targeted therapy use based on NGS results. RESULTS: Of the 557 IDHwt GBM patients with sequencing, 182 entered clinical trials at diagnosis (32.7%) and 213 (38.2%) entered after recurrence. Sequencing results for 130 patients (23.3%) were utilized for clinical trial enrollment for either targeted therapy indications (6.9 % upfront and 27.7% at recurrent clinical trials and 3.1% for off-label targeted therapy) or exploratory studies (55.4% upfront and 6.9% recurrent clinical trials). Median overall survival was 20.1 months with no survival difference seen between patients enrolled in clinical trials compared to those who were not, in a posthoc analysis. CONCLUSIONS: While NGS testing has become essential for improved molecular diagnostics, our study illustrates that targeted gene panels remain underutilized for selecting therapy in GBM-IDHwt. Targeted therapy and clinical trial design remain to be improved to help leverage the potential of NGS in clinical care.


Assuntos
Glioblastoma , Adulto , Ensaios Clínicos como Assunto , Glioblastoma/diagnóstico , Glioblastoma/genética , Glioblastoma/terapia , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Humanos , Mutação , Patologia Molecular , Estudos Retrospectivos
9.
Hematol Oncol Clin North Am ; 36(1): 133-146, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34801160

RESUMO

Meningiomas are largely indolent tumors with a benign clinical course, but a minority exhibit aggressive behavior characterized by rapid growth, neurologic deficits, and increased mortality. Identifying high-risk patients requiring intervention is challenging, but recent insights into meningioma biology provide a useful guide for decision making. Standard of care for recurrent or biologically aggressive tumors consists of surgery and radiation therapy. Systemic therapies targeting vascular endothelial growth factor signaling and somatostatin analogues are potential options for those with refractory disease but display only modest activity. New paradigms in meningioma clinical trial design provide hope for improved options in the future.


Assuntos
Neoplasias Meníngeas , Meningioma , Biologia , Humanos , Neoplasias Meníngeas/terapia , Meningioma/terapia , Recidiva Local de Neoplasia , Fator A de Crescimento do Endotélio Vascular
10.
Cell Rep ; 32(13): 108196, 2020 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-32997991

RESUMO

Loss of PTEN, the negative regulator of PI3K activity, is frequent in glioblastomas (GBMs). However, the role of the two major PI3K isoforms, p110α and p110ß, in PTEN-deficient gliomagenesis remains unknown. We show that PTEN-deficient GBM largely depends on p110α for proliferation and p110ß for migration. Genetic ablation of either isoform delays tumor progression in mice, but only ablating both isoforms completely blocks GBM driven by the concurrent ablation of Pten and p53. BKM120 (buparlisib) treatment only modestly prolongs survival in mice bearing intracranial Pten/p53 null tumors due to partial pathway inhibition. BKM120 extends the survival of mice bearing intracranial tumors in which p110ß, but not p110α, has been genetically ablated in the Pten/p53 null glioma, indicating that BKM120 fails to inhibit p110ß effectively. Our study suggests that the failure of PI3K inhibitors in GBM may be due to insufficient inhibition of p110ß and indicates a need to develop brain-penetrant p110α/ß inhibitors.


Assuntos
Glioblastoma/genética , PTEN Fosfo-Hidrolase/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Isoformas de Proteínas/metabolismo , Animais , Glioblastoma/patologia , Humanos , Masculino , Camundongos
11.
Nature ; 580(7804): 517-523, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32322066

RESUMO

A high tumour mutational burden (hypermutation) is observed in some gliomas1-5; however, the mechanisms by which hypermutation develops and whether it predicts the response to immunotherapy are poorly understood. Here we comprehensively analyse the molecular determinants of mutational burden and signatures in 10,294 gliomas. We delineate two main pathways to hypermutation: a de novo pathway associated with constitutional defects in DNA polymerase and mismatch repair (MMR) genes, and a more common post-treatment pathway, associated with acquired resistance driven by MMR defects in chemotherapy-sensitive gliomas that recur after treatment with the chemotherapy drug temozolomide. Experimentally, the mutational signature of post-treatment hypermutated gliomas was recapitulated by temozolomide-induced damage in cells with MMR deficiency. MMR-deficient gliomas were characterized by a lack of prominent T cell infiltrates, extensive intratumoral heterogeneity, poor patient survival and a low rate of response to PD-1 blockade. Moreover, although bulk analyses did not detect microsatellite instability in MMR-deficient gliomas, single-cell whole-genome sequencing analysis of post-treatment hypermutated glioma cells identified microsatellite mutations. These results show that chemotherapy can drive the acquisition of hypermutated populations without promoting a response to PD-1 blockade and supports the diagnostic use of mutational burden and signatures in cancer.


Assuntos
Neoplasias Encefálicas/genética , Neoplasias Encefálicas/terapia , Glioma/genética , Glioma/terapia , Mutação , Animais , Antineoplásicos Alquilantes/farmacologia , Antineoplásicos Alquilantes/uso terapêutico , Neoplasias Encefálicas/imunologia , Reparo de Erro de Pareamento de DNA/genética , Frequência do Gene , Genoma Humano/efeitos dos fármacos , Genoma Humano/genética , Glioma/imunologia , Humanos , Masculino , Camundongos , Repetições de Microssatélites/efeitos dos fármacos , Repetições de Microssatélites/genética , Mutagênese/efeitos dos fármacos , Mutação/efeitos dos fármacos , Fenótipo , Prognóstico , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Análise de Sequência de DNA , Temozolomida/farmacologia , Temozolomida/uso terapêutico , Ensaios Antitumorais Modelo de Xenoenxerto
12.
J Magn Reson Imaging ; 52(4): 1227-1236, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32167652

RESUMO

BACKGROUND: Approximately one-fourth of all cancer metastases are found in the brain. MRI is the primary technique for detection of brain metastasis, planning of radiotherapy, and the monitoring of treatment response. Progress in tumor treatment now requires detection of new or growing metastases at the small subcentimeter size, when these therapies are most effective. PURPOSE: To develop a deep-learning-based approach for finding brain metastasis on MRI. STUDY TYPE: Retrospective. SEQUENCE: Axial postcontrast 3D T1 -weighted imaging. FIELD STRENGTH: 1.5T and 3T. POPULATION: A total of 361 scans of 121 patients were used to train and test the Faster region-based convolutional neural network (Faster R-CNN): 1565 lesions in 270 scans of 73 patients for training; 488 lesions in 91 scans of 48 patients for testing. From the 48 outputs of Faster R-CNN, 212 lesions in 46 scans of 18 patients were used for training the RUSBoost algorithm (MatLab) and 276 lesions in 45 scans of 30 patients for testing. ASSESSMENT: Two radiologists diagnosed and supervised annotation of metastases on brain MRI as ground truth. This data were used to produce a 2-step pipeline consisting of a Faster R-CNN for detecting abnormal hyperintensity that may represent brain metastasis and a RUSBoost classifier to reduce the number of false-positive foci detected. STATISTICAL TESTS: The performance of the algorithm was evaluated by using sensitivity, false-positive rate, and receiver's operating characteristic (ROC) curves. The detection performance was assessed both per-metastases and per-slice. RESULTS: Testing on held-out brain MRI data demonstrated 96% sensitivity and 20 false-positive metastases per scan. The results showed an 87.1% sensitivity and 0.24 false-positive metastases per slice. The area under the ROC curve was 0.79. CONCLUSION: Our results showed that deep-learning-based computer-aided detection (CAD) had the potential of detecting brain metastases with high sensitivity and reasonable specificity. LEVEL OF EVIDENCE: 3 TECHNICAL EFFICACY STAGE: 2 J. Magn. Reson. Imaging 2020;52:1227-1236.


Assuntos
Aprendizado Profundo , Neoplasias , Encéfalo/diagnóstico por imagem , Humanos , Imageamento por Ressonância Magnética , Estudos Retrospectivos , Sensibilidade e Especificidade
14.
Neuro Oncol ; 21(5): 640-647, 2019 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-30715520

RESUMO

BACKGROUND: Whole-brain radiotherapy (WBRT) in patients with brain metastases (BM) is associated with neurocognitive decline. Given its crucial role in learning and memory, efforts to mitigate this toxicity have mostly focused on sparing radiation to the hippocampus. We hypothesized that BM are not evenly distributed across the brain and that several additional areas may be avoided in WBRT based on a low risk of developing BM. METHODS: We contoured 2757 lesions in a large, single-institution database of patients with newly diagnosed BM. BM centroids were mapped onto a standard brain atlas of 55 anatomic subunits and the observed percentage of BM was compared with what would be expected based on that region's volume. A region of interest (ROI) analysis was performed in a validation cohort of patients from 2 independent institutions using equivalence and one-sample hypothesis tests. RESULTS: The brainstem and bilateral thalami, hippocampi, parahippocampal gyri, amygdala, and temporal poles had a cumulative risk of harboring a BM centroid of 4.83% in the initial cohort. This ROI was tested in 157 patients from the validation cohort and was found to have a 4.1% risk of developing BM, which was statistically equivalent between the 2 groups (P < 1 × 10-6, upper bound). CONCLUSION: Several critical brain structures are at a low risk of developing BM. A risk-adapted approach to WBRT is worthy of further investigation and may mitigate the toxicities of conventional radiation.


Assuntos
Neoplasias Encefálicas/secundário , Encéfalo/patologia , Irradiação Craniana/efeitos adversos , Neoplasias/radioterapia , Planejamento da Radioterapia Assistida por Computador/normas , Lobo Temporal/patologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Encéfalo/efeitos da radiação , Neoplasias Encefálicas/radioterapia , Estudos de Casos e Controles , Estudos de Coortes , Feminino , Seguimentos , Humanos , Masculino , Pessoa de Meia-Idade , Neoplasias/patologia , Prognóstico , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador/métodos , Lobo Temporal/efeitos da radiação
16.
Am J Med ; 131(8): 874-882, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29371158

RESUMO

Brain tumors are common, requiring general medical providers to have a basic understanding of their diagnosis and management. The most prevalent brain tumors are intracranial metastases from systemic cancers, meningiomas, and gliomas, specifically, glioblastoma. Central nervous system metastases may occur anywhere along the neuroaxis, and require complex multidisciplinary care with neurosurgery, radiation oncology, and medical oncology. Meningiomas are tumors of the meninges, mostly benign and often managed by surgical resection, with radiation therapy and chemotherapy reserved for high-risk or refractory disease. Glioblastoma is the most common and aggressive malignant primary brain tumor, with a limited response to standard-of-care concurrent chemoradiation. The new classification of gliomas relies on molecular features, as well as histology, to arrive at an "integrated diagnosis" that better captures prognosis. This manuscript will review the most common brain tumors with an emphasis on their diagnosis, oncologic management, and management of medical complications.


Assuntos
Neoplasias Encefálicas/diagnóstico , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Neoplasias Encefálicas/terapia , Glioblastoma/diagnóstico , Glioblastoma/terapia , Humanos , Meningioma/diagnóstico , Meningioma/terapia , Neuroimagem
17.
Curr Infect Dis Rep ; 19(2): 5, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28233187

RESUMO

PURPOSE OF REVIEW: The high incidence of and mortality from glioblastoma are matched by a lack of effective therapies. Previous research suggests an association between viral infection and glioma formation. In this manuscript, we review the available evidence for this association and the efficacy of treatment strategies targeted against viral infection. RECENT FINDINGS: We find that while a wide array of viruses can drive glioma tumor formation in vitro and in xenograft models, the most convincing association is with the human Cytomegalovirus (HCMV). Detection of HCMV in glioblastoma resected from living patients suggests it may either drive gliomagenesis, support tumor growth, or reactivate silently in these tumors. However, there is conflicting evidence on its ubiquity and its role in tumor formation. Valganciclovir may extend survival in glioblastoma patients, though adequate data on its efficacy and mechanism of action are lacking. Immunotherapy provides the opportunity to specifically target the virus and possibly, glioblastoma, though there are no large, randomized trials testing its efficacy to date. Overall, despite mounting evidence for an association between HCMV and glioblastoma, its role as an oncogenic factor and a therapeutic target remains controversial.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA