Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
1.
Inorg Chem ; 63(21): 9735-9752, 2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38728376

RESUMO

A series of Ru(II) complexes incorporating two 4,4'-bis(trifluoromethyl)-2,2'-bipyridine (4,4'-btfmb) coligands and thienyl-appended imidazo[4,5-f][1,10]phenanthroline (IP-nT) ligands was characterized and assessed for phototherapy effects toward cancer cells. The [Ru(4,4'-btfmb)2(IP-nT)]2+ scaffold has greater overall redox activity compared to Ru(II) polypyridyl complexes such as [Ru(bpy)3]2+. Ru-1T-Ru-4T have additional oxidations due to the nT group and additional reductions due to the 4,4'-btfmb ligands. Ru-2T-Ru-4T also exhibit nT-based reductions. Ru-4T exhibits two oxidations and eight reductions within the potential window of -3 to +1.5 V. The lowest-lying triplets (T1) for Ru-0T-2T are metal-to-ligand charge-transfer (3MLCT) excited states with lifetimes around 1 µs, whereas T1 for Ru-3T-4T is longer-lived (∼20-24 µs) and of significant intraligand charge-transfer (3ILCT) character. Phototoxicity toward melanoma cells (SK-MEL-28) increases with n, with Ru-4T having a visible EC50 value as low as 9 nM and PI as large as 12,000. Ru-3T and Ru-4T retain some of this activity in hypoxia, where Ru-4T has a visible EC50 as low as 35 nM and PI as high as 2900. Activity over six biological replicates is consistent and within an order of magnitude. These results demonstrate the importance of lowest-lying 3ILCT states for phototoxicity and maintaining activity in hypoxia.

2.
Inorg Chem ; 62(51): 21181-21200, 2023 Dec 25.
Artigo em Inglês | MEDLINE | ID: mdl-38079387

RESUMO

Ru(II) polypyridyl complexes have gained widespread attention as photosensitizers for photodynamic therapy (PDT). Herein, we systematically investigate a series of the type [Ru(phen)2(IP-nT)]2+, featuring 1,10-phenanthroline (phen) coligands and imidazo[4,5-f][1,10]phenanthroline ligands tethered to n = 0-4 thiophene rings (IP-nT). The complexes were characterized and investigated for their electrochemical, spectroscopic, and (photo)biological properties. The electrochemical oxidation of the nT unit shifted by -350 mV as n = 1 → 4 (+920 mV for Ru-1T, +570 mV for Ru-4T); nT reductions were observed in complexes Ru-3T (-2530 mV) and Ru-4T (-2300 mV). Singlet oxygen quantum yields ranged from 0.53 to 0.88, with Ru-3T and Ru-4T being equally efficient (∼0.88). Time-resolved absorption spectra of Ru-0T-1T were dominated by metal-to-ligand charge-transfer (3MLCT) states (τTA = 0.40-0.85 µs), but long-lived intraligand charge-transfer (3ILCT) states were observed in Ru-2T-4T (τTA = 25-148 µs). The 3ILCT energies of Ru-3T and Ru-4T were computed to be 1.6 and 1.4 eV, respectively. The phototherapeutic efficacy against melanoma cells (SK-MEL-28) under broad-band visible light (400-700 nm) increases as n = 0 → 4: Ru-0T was inactive up to 300 µM, Ru-1T-2T were moderately active (EC50 ∼ 600 nM, PI = 200), and Ru-3T (EC50 = 57 nM, PI > 1100) and Ru-4T (EC50 = 740 pM, PI = 114,000) were the most phototoxic. The activity diminishes with longer wavelengths of light and is completely suppressed for all complexes except Ru-3T and Ru-4T in hypoxia. Ru-4T is the more potent and robust PS in 1% O2 over seven biological replicates (avg EC50 = 1.3 µM, avg PI = 985). Ru-3T exhibited hypoxic activity in five of seven replicates, underscoring the need for biological replicates in compound evaluation. Singlet oxygen sensitization is likely responsible for phototoxic effects of the compounds in normoxia, but the presence of redox-active excited states may facilitate additional photoactive pathways for complexes with three or more thienyl groups. The 3ILCT state with its extended lifetime (30-40× longer than the 3MLCT state for Ru-3T and Ru-4T) implicates its predominant role in photocytotoxicity.


Assuntos
Fotoquimioterapia , Rutênio , Fenantrolinas/farmacologia , Fenantrolinas/química , Oxigênio Singlete/química , Rutênio/farmacologia , Rutênio/química , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/química , Ligantes
3.
Front Oncol ; 13: 1244709, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37700826

RESUMO

Traditional external light-based Photodynamic Therapy (PDT)'s application is limited to the surface and minimal thickness tumors because of the inefficiency of light in penetrating deep-seated tumors. To address this, the emerging field of radiation-activated PDT (radioPDT) uses X-rays to trigger photosensitizer-containing nanoparticles (NPs). A key consideration in radioPDT is the energy transfer efficiency from X-rays to the photosensitizer for ultimately generating the phototoxic reactive oxygen species (ROS). In this study, we developed a new variant of pegylated poly-lactic-co-glycolic (PEG-PLGA) encapsulated nanoscintillators (NSCs) along with a new, highly efficient ruthenium-based photosensitizer (Ru/radioPDT). Characterization of this NP via transmission electron microscopy, dynamic light scattering, UV-Vis spectroscopy, and inductively coupled plasma mass-spectroscopy showed an NP size of 120 nm, polydispersity index (PDI) of less than 0.25, high NSCs loading efficiency over 90% and in vitro accumulation within the cytosolic structure of endoplasmic reticulum and lysosome. The therapeutic efficacy of Ru/radioPDT was determined using PC3 cell viability and clonogenic assays. Ru/radioPDT exhibited minimal cell toxicity until activated by radiation to induce significant cancer cell kill over radiation alone. Compared to protoporphyrin IX-mediated radioPDT (PPIX/radioPDT), Ru/radioPDT showed higher capacity for singlet oxygen generation, maintaining a comparable cytotoxic effect on PC3 cells.

4.
Int J Mol Sci ; 24(6)2023 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-36983054

RESUMO

Protic ruthenium complexes using the dihydroxybipyridine (dhbp) ligand combined with a spectator ligand (N,N = bpy, phen, dop, Bphen) have been studied for their potential activity vs. cancer cells and their photophysical luminescent properties. These complexes vary in the extent of π expansion and the use of proximal (6,6'-dhbp) or distal (4,4'-dhbp) hydroxy groups. Eight complexes are studied herein as the acidic (OH bearing) form, [(N,N)2Ru(n,n'-dhbp)]Cl2, or as the doubly deprotonated (O- bearing) form. Thus, the presence of these two protonation states gives 16 complexes that have been isolated and studied. Complex 7A, [(dop)2Ru(4,4'-dhbp)]Cl2, has been recently synthesized and characterized spectroscopically and by X-ray crystallography. The deprotonated forms of three complexes are also reported herein for the first time. The other complexes studied have been synthesized previously. Three complexes are light-activated and exhibit photocytotoxicity. The log(Do/w) values of the complexes are used herein to correlate photocytotoxicity with improved cellular uptake. For Ru complexes 1-4 bearing the 6,6'-dhbp ligand, photoluminescence studies (all in deaerated acetonitrile) have revealed that steric strain leads to photodissociation which tends to reduce photoluminescent lifetimes and quantum yields in both protonation states. For Ru complexes 5-8 bearing the 4,4'-dhbp ligand, the deprotonated Ru complexes (5B-8B) have low photoluminescent lifetimes and quantum yields due to quenching that is proposed to involve the 3LLCT excited state and charge transfer from the [O2-bpy]2- ligand to the N,N spectator ligand. The protonated OH bearing 4,4'-dhbp Ru complexes (5A-8A) have long luminescence lifetimes which increase with increasing π expansion on the N,N spectator ligand. The Bphen complex, 8A, has the longest lifetime of the series at 3.45 µs and a photoluminescence quantum yield of 18.7%. This Ru complex also exhibits the best photocytotoxicity of the series. A long luminescence lifetime is correlated with greater singlet oxygen quantum yields because the triplet excited state is presumably long-lived enough to interact with 3O2 to yield 1O2.


Assuntos
Luminescência , Rutênio , Rutênio/química , Ligantes
5.
Angew Chem Int Ed Engl ; 62(17): e202301452, 2023 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-36827484

RESUMO

This study employs TLD1433, a RuII -based photodynamic therapy (PDT) agent in human clinical trials, as a benchmark to establish protocols for studying the excited-state dynamics of photosensitizers (PSs) in cellulo, in the local environment provided by human cancer cells. Very little is known about the excited-state properties of any PS in live cells, and for TLD1433, it is terra incognita. This contribution targets a general problem in phototherapy, which is how to interrogate the light-triggered, function-determining processes of the PSs in the relevant biological environment, and establishes methodological advances to study the ultrafast photoinduced processes for TLD1433 when taken up by MCF7 cells. We generalize the methodological developments and results in terms of molecular physics by applying them to TLD1433's analogue TLD1633, making this study a benchmark to investigate the excited-state dynamics of phototoxic compounds in the complex biological environment.


Assuntos
Fotoquimioterapia , Rutênio , Humanos , Fármacos Fotossensibilizantes/uso terapêutico , Células MCF-7
6.
Photochem Photobiol ; 99(2): 751-760, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36481983

RESUMO

Osmium (Os) based photosensitizers (PSs) are a unique class of nontetrapyrrolic metal-containing PSs that absorb red light. We recently reported a highly potent Os(II) PS, rac-[Os(phen)2 (IP-4T)](Cl)2 , referred to as ML18J03 herein, with light EC50 values as low as 20 pm. ML18J03 also exhibits low dark toxicity and submicromolar light EC50 values in hypoxia in some cell lines. However, owing to its longer oligothiophene chain, ML18J03 is not completely water soluble and forms 1-2 µm sized aggregates in PBS containing 1% DMSO. This aggregation causes variability in PDT efficacy between assays and thus unreliable and irreproducible reports of in vitro activity. To that end, we utilized PEG-modified DPPC liposomes (138 nm diameter) and DSPE-mPEG2000 micelles (10.2 nm diameter) as lipid nanoformulation vehicles to mitigate aggregation of ML18J03 and found that the spectroscopic properties important to biological activity were maintained or improved. Importantly, the lipid formulations decreased the interassay variance between the EC50 values by almost 20-fold, with respect to the unformulated ML18J03 when using broadband visible light excitation (P = 0.0276). Herein, lipid formulations are presented as reliable platforms for more accurate in vitro photocytotoxicity quantification for PSs prone to aggregation (such as ML18J03) and will be useful for assessing their in vivo PDT effects.


Assuntos
Fotoquimioterapia , Fármacos Fotossensibilizantes , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/química , Osmio , Luz , Lipossomos/química , Lipídeos
7.
Pharmaceutics ; 14(11)2022 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-36365244

RESUMO

Osmium (Os)-based photosensitizers (PSs) exhibit unique broad, red-shifted absorption, favoring PDT activity at greater tissue depths. We recently reported on a potent Os(II) PS, rac-[Os(phen)2(IP-4T)](Cl)2 (ML18J03) with submicromolar hypoxia activity. ML18J03 exhibits a low luminescence quantum yield of 9.8 × 10-5 in PBS, which limits its capacity for in vivo luminescence imaging. We recently showed that formulating ML18J03 into 10.2 nm DSPE-mPEG2000 micelles (Mic-ML18J03) increases its luminescence quantum yield by two orders of magnitude. Here, we demonstrate that Mic-ML18J03 exhibits 47-fold improved accumulative luminescence signals in orthotopic AT-84 head and neck tumors. We show, for the first time, that micellar formulation provides up to 11.7-fold tumor selectivity for ML18J03. Furthermore, Mic-ML18J03 does not experience the concentration-dependent quenching observed with unformulated ML18J03 in PBS, and formulation reduces spectral shifting of the emission maxima during PDT (variance = 6.5 and 27.3, respectively). The Mic-ML18J03 formulation also increases the production of reactive molecular species 2-3-fold. These findings demonstrate that micellar formulation is a versatile and effective approach to enable in vivo luminescence imaging options for an otherwise quenched, yet promising, PS.

8.
Anal Chim Acta ; 1228: 340156, 2022 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-36126998

RESUMO

Sub/supercritical fluid chromatography (SFC) is a green separation technique that has been used to separate a wide variety of compounds and is proven to be immensely useful for chiral separations. However, SFC is currently not thought to be applicable for ionic compounds due to their low solubility in CO2, even with additives and organic modifiers. Recently, a large amount of research has been centered on octahedral complexes of Ru(II) and Os(II) with bidentate polypyridyl ligands due to their ability to serve in cancer treatment and other biological activities. These compounds exist as the delta (Δ) and lambda (Λ) enantiomers. Previously, similar compounds have been enantiomerically separated using HPLC and capillary electrophoresis, but never with SFC. Cyclofructan-6 (CF6) derivatized with (R)-naphthyl ethyl (RN) groups has been proven to be an effective chiral stationary phase for these separations in HPLC. This column chemistry was expanded to SFC to provide the first chiral separation of a wide variety (23 complexes in total) of ionic octahedral polypyridyl complexes. Unexpected behavior for mixing methanol and acetonitrile as the organic modifier will be discussed, along with the effects of additives. Enantioselectivity on CF6-RN chemistry is shown to be dependent on the conjugation level and rigidity of the metal complexes. Mass transfer kinetic behavior is also shown, and high-efficiency baseline resolved rapid separations are shown for fast screening or quantitation of representative coordination complexes.


Assuntos
Cromatografia com Fluido Supercrítico , Complexos de Coordenação , Acetonitrilas , Dióxido de Carbono , Cromatografia com Fluido Supercrítico/métodos , Íons , Metanol , Estereoisomerismo
9.
Adv Sci (Weinh) ; 9(24): e2104594, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35748165

RESUMO

Desmoplasia is characteristic of pancreatic ductal adenocarcinoma (PDAC), which exhibits 5-year survival rates of 3%. Desmoplasia presents physical and biochemical barriers that contribute to treatment resistance, yet depleting the stroma alone is unsuccessful and even detrimental to patient outcomes. This study is the first demonstration of targeted photoactivable multi-inhibitor liposomes (TPMILs) that induce both photodynamic and chemotherapeutic tumor insult, while simultaneously remediating desmoplasia in orthotopic PDAC. TPMILs targeted with cetuximab (anti-EGFR mAb) contain lipidated benzoporphyrin derivative (BPD-PC) photosensitizer and irinotecan. The desmoplastic tumors comprise human PDAC cells and patient-derived cancer-associated fibroblasts. Upon photoactivation, the TPMILs induce 90% tumor growth inhibition at only 8.1% of the patient equivalent dose of nanoliposomal irinotecan (nal-IRI). Without EGFR targeting, PMIL photoactivation is ineffective. TPMIL photoactivation is also sixfold more effective at inhibiting tumor growth than a cocktail of Visudyne-photodynamic therapy (PDT) and nal-IRI, and also doubles survival and extends progression-free survival by greater than fivefold. Second harmonic generation imaging reveals that TPMIL photoactivation reduces collagen density by >90% and increases collagen nonalignment by >103 -fold. Collagen nonalignment correlates with a reduction in tumor burden and survival. This single-construct phototoxic, chemotherapeutic, and desmoplasia-remediating regimen offers unprecedented opportunities to substantially extend survival in patients with otherwise dismal prognoses.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Carcinoma Ductal Pancreático/tratamento farmacológico , Receptores ErbB/uso terapêutico , Humanos , Irinotecano/farmacologia , Irinotecano/uso terapêutico , Lipossomos/uso terapêutico , Neoplasias Pancreáticas/tratamento farmacológico , Inibidores de Proteínas Quinases/uso terapêutico , Neoplasias Pancreáticas
10.
J Am Chem Soc ; 144(18): 8317-8336, 2022 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-35482975

RESUMO

Ru(II) complexes that undergo photosubstitution reactions from triplet metal-centered (3MC) excited states are of interest in photochemotherapy (PCT) due to their potential to produce cytotoxic effects in hypoxia. Dual-action systems that incorporate this stoichiometric mode to complement the oxygen-dependent photosensitization pathways that define photodynamic therapy (PDT) are poised to maintain antitumor activity regardless of the oxygenation status. Herein, we examine the way in which these two pathways influence photocytotoxicity in normoxia and in hypoxia using the [Ru(dmp)2(IP-nT)]2+ series (where dmp = 2,9-dimethyl-1,10-phenanthroline and IP-nT = imidazo[4,5-f][1,10]phenanthroline tethered to n = 0-4 thiophene rings) to switch the dominant excited state from the metal-based 3MC state in the case of Ru-phen-Ru-1T to the ligand-based 3ILCT state for Ru-3T and Ru-4T. Ru-phen-Ru-1T, having dominant 3MC states and the largest photosubstitution quantum yields, are inactive in both normoxia and hypoxia. Ru-3T and Ru-4T, with dominant 3IL/3ILCT states and long triplet lifetimes (τTA = 20-25 µs), have the poorest photosubstitution quantum yields, yet are extremely active. In the best instances, Ru-4T exhibit attomolar phototoxicity toward SKMEL28 cells in normoxia and picomolar in hypoxia, with phototherapeutic index values in normoxia of 105-1012 and 103-106 in hypoxia. While maximizing excited-state deactivation through photodissociative 3MC states did not result in bonafide dual-action PDT/PCT agents, the study has produced the most potent photosensitizer we know of to date. The extraordinary photosensitizing capacity of Ru-3T and Ru-4T may stem from a combination of very efficient 1O2 production and possibly complementary type I pathways via 3ILCT excited states.


Assuntos
Fotoquimioterapia , Rutênio , Humanos , Hipóxia , Fenantrolinas , Fármacos Fotossensibilizantes/farmacologia , Rutênio/farmacologia
11.
J Phys Chem A ; 126(8): 1336-1344, 2022 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-35179905

RESUMO

TLD1433 is the first ruthenium (Ru)-based photodynamic therapy (PDT) agent to advance to clinical trials and is currently in a phase II study for treating nonmuscle bladder cancer with PDT. Herein, we present a photophysical study of TLD1433 and its derivative TLD1633 using complex, biologically relevant solvents to elucidate the excited-state properties that are key for biological activity. The complexes incorporate an imidazo [4,5-f][1,10]phenanthroline (IP) ligand appended to α-ter- or quaterthiophene, respectively, where TLD1433 = [Ru(4,4'-dmb)2(IP-3T)]Cl2 and TLD1633 = [Ru(4,4'-dmb)2(IP-4T)]Cl2 (4,4'-dmb = 4,4'-dimethyl-2,2'-bipyridine; 3T = α-terthiophene; 4T = α-quaterthiophene). Time-resolved transient absorption experiments demonstrate that the excited-state dynamics of the complexes change upon interaction with biological macromolecules (e.g., DNA). In this case, the accessibility of the lowest-energy triplet intraligand charge-transfer (3ILCT) state (T1) is increased at the expense of a higher-lying 3ILCT state. We attribute this behavior to the increased rigidity of the ligand framework upon binding to DNA, which prolongs the lifetime of the T1 state. This lowest-lying state is primarily responsible for O2 sensitization and hence photoinduced cytotoxicity. Therefore, to gain a realistic picture of the excited-state kinetics that underlie the photoinduced function of the complexes, it is necessary to interrogate their photophysical dynamics in the presence of biological targets once they are known.


Assuntos
Fotoquimioterapia , Rutênio , Ligantes , Fenantrolinas/química , Fármacos Fotossensibilizantes/química , Fármacos Fotossensibilizantes/farmacologia , Rutênio/química , Rutênio/farmacologia
12.
Am J Cancer Res ; 12(1): 210-228, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35141014

RESUMO

Cancer therapies that generate T cell-based anti-cancer immune responses are critical for clinical success and are favored over traditional therapies. One way to elicit T cell immune responses and generate long-lasting anti-cancer immunity is through induction of immunogenic cell death (ICD), a form of regulated cell death that promotes antigenicity and adjuvanticity within dying cells. Therefore, research in the last decade has focused on developing cancer therapies which stimulate ICD. Herein, we report novel photodynamic therapy (PDT) compounds with immunomodulatory and ICD inducing properties. PDT is a clinically approved, minimally invasive anti-cancer treatment option and has been extensively investigated for its tumor-destroying properties, lower side effects, and immune activation capabilities. In this study, we explore two structurally related ruthenium compounds, ML19B01 and ML19B02, that can be activated with near infrared light to elicit superior cytotoxic properties. In addition to its direct cell killing abilities, we investigated the effect of our PSs on immunological pathways upon activation. PDT treatment with ML19B01 and ML19B02 induced differential expression of reactive oxygen species, proinflammatory response-mediating genes, and heat shock proteins. Dying melanoma cells induced by ML19B01-PDT and ML19B02-PDT contained ICD hallmarks such as calreticulin, ATP, and HMGB1, initiated activation of antigen presenting cells, and were efficiently phagocytosed by bone marrow-derived dendritic cells. Most importantly, despite the distinct profiles of ICD hallmark inducing capacities, vaccination with both PDT-induced dying cancer cells established anti-tumor immunity that protected mice against subsequent challenge with melanoma cells.

13.
Viruses ; 14(1)2022 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-35062314

RESUMO

Photodynamic inactivation (PDI) employs a photosensitizer, light, and oxygen to create a local burst of reactive oxygen species (ROS) that can inactivate microorganisms. The botanical extract PhytoQuinTM is a powerful photosensitizer with antimicrobial properties. We previously demonstrated that photoactivated PhytoQuin also has antiviral properties against herpes simplex viruses and adenoviruses in a dose-dependent manner across a broad range of sub-cytotoxic concentrations. Here, we report that human coronaviruses (HCoVs) are also susceptible to photodynamic inactivation. Photoactivated-PhytoQuin inhibited the replication of the alphacoronavirus HCoV-229E and the betacoronavirus HCoV-OC43 in cultured cells across a range of sub-cytotoxic doses. This antiviral effect was light-dependent, as we observed minimal antiviral effect of PhytoQuin in the absence of photoactivation. Using RNase protection assays, we observed that PDI disrupted HCoV particle integrity allowing for the digestion of viral RNA by exogenous ribonucleases. Using lentiviruses pseudotyped with the SARS-CoV-2 Spike (S) protein, we once again observed a strong, light-dependent antiviral effect of PhytoQuin, which prevented S-mediated entry into human cells. We also observed that PhytoQuin PDI altered S protein electrophoretic mobility. The PhytoQuin constituent emodin displayed equivalent light-dependent antiviral activity to PhytoQuin in matched-dose experiments, indicating that it plays a central role in PhytoQuin PDI against CoVs. Together, these findings demonstrate that HCoV lipid envelopes and proteins are damaged by PhytoQuin PDI and expands the list of susceptible viruses.


Assuntos
Antivirais/farmacologia , Coronavirus/efeitos dos fármacos , Fármacos Fotossensibilizantes/farmacologia , Inativação de Vírus/efeitos dos fármacos , Animais , Antivirais/efeitos da radiação , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Cricetinae , Emodina/farmacologia , Emodina/efeitos da radiação , Humanos , Luz , Fármacos Fotossensibilizantes/efeitos da radiação , Extratos Vegetais/farmacologia , Extratos Vegetais/efeitos da radiação , SARS-CoV-2/efeitos dos fármacos , Glicoproteína da Espícula de Coronavírus/efeitos dos fármacos , Vírion/efeitos dos fármacos
14.
Photochem Photobiol ; 98(1): 102-116, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34411308

RESUMO

We report new ruthenium complexes bearing the lipophilic bathophenanthroline (BPhen) ligand and dihydroxybipyridine (dhbp) ligands which differ in the placement of the OH groups ([(BPhen)2 Ru(n,n'-dhbp)]Cl2 with n = 6 and 4 in 1A and 2A , respectively). Full characterization data are reported for 1A and 2A and single crystal X-ray diffraction for 1A . Both 1A and 2A are diprotic acids. We have studied 1A , 1B , 2A , and 2B (B = deprotonated forms) by UV-vis spectroscopy and 1 photodissociates, but 2 is light stable. Luminescence studies reveal that the basic forms have lower energy 3 MLCT states relative to the acidic forms. Complexes 1A and 2A produce singlet oxygen with quantum yields of 0.05 and 0.68, respectively, in acetonitrile. Complexes 1 and 2 are both photocytotoxic toward breast cancer cells, with complex 2 showing EC50 light values as low as 0.50 µM with PI values as high as >200 vs. MCF7. Computational studies were used to predict the energies of the 3 MLCT and 3 MC states. An inaccessible 3 MC state for 2B suggests a rationale for why photodissociation does not occur with the 4,4'-dhbp ligand. Low dark toxicity combined with an accessible 3 MLCT state for 1 O2 generation explains the excellent photocytotoxicity of 2.


Assuntos
Neoplasias da Mama , Rutênio , Feminino , Humanos , Ligantes , Fenantrolinas , Rutênio/química , Compostos de Rutênio
15.
Photochem Photobiol ; 98(1): 73-84, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-33559191

RESUMO

In an earlier study of π-expansive ruthenium complexes for photodynamic and photochemo-therapies, it was shown that a pair of structural isomers differing only in the connection point of a naphthalene residue exhibited vastly different biological activity. These isomers are further explored in this paper through the activity of their functionalized derivatives. In normoxia, the inactive 2-NIP isomer (5) can be made as photocytotoxic as the active 1-NIP isomer (1) by functionalizing with methyl or methoxy groups, while methoxy variants of the 1-NIP isomer became inactive. In all cases, the singlet oxygen sensitization quantum yield was below 1%. Hypoxic photocytotoxicity was attenuated, with only three of the series showing any activity, notwithstanding the photodissociative ligands. The results here are consistent with the earlier findings in that seemingly minor structural modifications on the non-strained ligand can dramatically modulate the normoxic and hypoxic activity of these strained compounds and that these changes appear to exert a greater influence on photocytotoxicity than singlet oxygen sensitization or rates of photosubstitution in cell-free conditions would suggest.


Assuntos
Antineoplásicos , Complexos de Coordenação , Rutênio , Antineoplásicos/química , Antineoplásicos/farmacologia , Complexos de Coordenação/química , Complexos de Coordenação/farmacologia , Ligantes , Rutênio/química , Rutênio/farmacologia , Oxigênio Singlete/química
16.
J Am Chem Soc ; 144(22): 9543-9547, 2022 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-34882381

RESUMO

Tumor hypoxia renders treatments ineffective that are directly (e.g., radiotherapy and photodynamic therapy) or indirectly (e.g., chemotherapy) dependent on tumor oxygenation. This study introduces a ruthenium compound as a light-responsive anticancer agent that is water-soluble, has minimal dark cytotoxicity, is active at concentrations as low as 170 pM in ∼18.5% O2 normoxia and near 10 nM in 1% O2 hypoxia, and exhibits phototherapeutic indices as large as >500,000 in normoxia and >5,800 in 1% O2 hypoxia using broadband visible and monochromatic blue light treatments. These are the largest values reported to date for any compound class. We highlight the response in four different cell lines to improve rigor and reproducibility in the identification of promising clinical candidates.


Assuntos
Antineoplásicos , Fotoquimioterapia , Rutênio , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Linhagem Celular Tumoral , Humanos , Hipóxia/tratamento farmacológico , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/uso terapêutico , Reprodutibilidade dos Testes , Rutênio/farmacologia
17.
Coord Chem Rev ; 4702022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-36686369

RESUMO

Ruthenium(II)-based coordination complexes have emerged as photosensitizers (PSs) for photodynamic therapy (PDT) in oncology as well as antimicrobial indications and have great potential. Their modular architectures that integrate multiple ligands can be exploited to tune cellular uptake and subcellular targeting, solubility, light absorption, and other photophysical properties. A wide range of Ru(II) containing compounds have been reported as PSs for PDT or as photochemotherapy (PCT) agents. Many studies employ a common scaffold that is subject to systematic variation in one or two ligands to elucidate the impact of these modifications on the photophysical and photobiological performance. Studies that probe the excited state energies and dynamics within these molecules are of fundamental interest and are used to design next-generation systems. However, a comparison of the PDT efficacy between Ru(II) containing PSs and 1st or 2nd generation PSs, already in clinical use or preclinical/clinical studies, is rare. Even comparisons between Ru(II) containing molecular structures are difficult, given the wide range of excitation wavelengths, power densities, and cell lines utilized. Despite this gap, PDT dose metrics quantifying a PS's efficacy are available to perform qualitative comparisons. Such models are independent of excitation wavelength and are based on common outcome parameters, such as the photon density absorbed by the Ru(II) compound to cause 50% cell kill (LD50) based on the previously established threshold model. In this focused photophysical review, we identified all published studies on Ru(II) containing PSs since 2005 that reported the required photophysical, light treatment, and in vitro outcome data to permit the application of the Photodynamic Threshold Model to quantify their potential efficacy. The resulting LD50 values range from less than 1013 to above 1020 [hν cm-3], indicating a wide range in PDT efficacy and required optical energy density for ultimate clinical translation.

18.
J Phys Chem A ; 125(32): 6985-6994, 2021 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-34370485

RESUMO

We explore the photophysical properties of a family of Ru(II) complexes, Ru-ip-nT, designed as photosensitizers (PSs) for photodynamic therapy (PDT). The complexes incorporate a 1H-imidazo[4,5-f][1,10]-phenanthroline (ip) ligand appended to one or more thiophene rings. One of the complexes studied herein, Ru-ip-3T (known as TLD1433), is currently in phase II human clinical trials for treating bladder cancer by PDT. The potent photocytotoxicity of Ru-ip-3T is attributed to a long-lived intraligand charge-transfer triplet state. The accessibility of this state changes upon varying the length (n) of the oligothiophene substituent. In this paper, we highlight the impact of n on the ultrafast photoinduced dynamics in Ru-ip-nT, leading to the formation of the function-determining long-lived state. Femtosecond time-resolved transient absorption combined with resonance Raman data was used to map the excited-state relaxation processes from the Franck-Condon point of absorption to the formation of the lowest-energy triplet excited state, which is a triplet metal-to-ligand charge-transfer excited state for Ru-ip-0T-1T and an oligothienyl-localized triplet intraligand charge-transfer excited state for Ru-ip-2T-4T. We establish the structure-activity relationships with regard to changes in the excited-state dynamics as a function of thiophene chain length, which alters the photophysics of the complexes and presumably impacts the photocytotoxicity of these PSs.

19.
J Pharm Biomed Anal ; 204: 114233, 2021 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-34252819

RESUMO

The advent of cisplatin as a cancer drug in the late 1960s generated considerable interest in the use of transition metal complexes as cancer therapy agents. Despite enhanced research in this area, there has yet to be any non-platinum-based transition metal complex cancer drugs approved by the Food and Drug Administration (FDA). Recently a Ru(II) metal-organic dyad (TLD1433) has provided promising results as a photodynamic therapy (PDT) agent for some types of cancer. This particularly effective PDT compound has an oligothiophene chain appended to an imidazophenanthroline ligand which chelates Ru(II). The entire complex is chiral and is synthesized as a racemate. Five such chiral Ru(II) and Os(II) PDT agents were synthesized and their enantiomers separated for the first time. The enantiomers of these compounds are not easily crystalized. However, preparative LC provided sufficient amounts of these novel PDT agents to determine their absolute configurations by vibrational circular dichroism (VCD). The synthesis, separation and absolute configuration determinations are described and discussed in detail.


Assuntos
Antineoplásicos , Complexos de Coordenação , Fotoquimioterapia , Dicroísmo Circular , Estereoisomerismo
20.
Chem Sci ; 12(21): 7510-7520, 2021 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-34163842

RESUMO

Alzheimer's disease (AD) is a chronic neurodegenerative disorder characterized by progressive and irreversible damage to the brain. One of the hallmarks of the disease is the presence of both soluble and insoluble aggregates of the amyloid beta (Aß) peptide in the brain, and these aggregates are considered central to disease progression. Thus, the development of small molecules capable of modulating Aß peptide aggregation may provide critical insight into the pathophysiology of AD. In this work we investigate how photoactivation of three distorted Ru(ii) polypyridyl complexes (Ru1-3) alters the aggregation profile of the Aß peptide. Photoactivation of Ru1-3 results in the loss of a 6,6'-dimethyl-2,2'-bipyridyl (6,6'-dmb) ligand, affording cis-exchangeable coordination sites for binding to the Aß peptide. Both Ru1 and Ru2 contain an extended planar imidazo[4,5-f][1,10]phenanthroline ligand, as compared to a 2,2'-bipyridine ligand for Ru3, and we show that the presence of the phenanthroline ligand promotes covalent binding to Aß peptide His residues, and in addition, leads to a pronounced effect on peptide aggregation immediately after photoactivation. Interestingly, all three complexes resulted in a similar aggregate size distribution at 24 h, forming insoluble amorphous aggregates as compared to significant fibril formation for peptide alone. Photoactivation of Ru1-3 in the presence of pre-formed Aß1-42 fibrils results in a change to amorphous aggregate morphology, with Ru1 and Ru2 forming large amorphous aggregates immediately after activation. Our results show that photoactivation of Ru1-3 in the presence of either monomeric or fibrillar Aß1-42 results in the formation of large amorphous aggregates as a common endpoint, with Ru complexes incorporating the extended phenanthroline ligand accelerating this process and thereby limiting the formation of oligomeric species in the initial stages of the aggregation process that are reported to show considerable toxicity.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA