Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cephalalgia ; 44(1): 3331024231226186, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38215228

RESUMO

BACKGROUND: The trigeminal sensory neuropeptide calcitonin gene-related peptide (CGRP) is identified as an essential element in migraine pathogenesis. METHODS: In vitro and in vivo studies evaluated pharmacologic properties of the CGRP receptor antagonist atogepant. Radioligand binding using 125I-CGRP and cyclic adenosine monophosphate (cAMP) accumulation assays were conducted in human embryonic kidney 293 cells to assess affinity, functional potency and selectivity. Atogepant in vivo potency was assessed in the rat nitroglycerine model of facial allodynia and primate capsaicin-induced dermal vasodilation (CIDV) pharmacodynamic model. Cerebrospinal fluid/brain penetration and behavioral effects of chronic dosing and upon withdrawal were evaluated in rats. RESULTS: Atogepant exhibited high human CGRP receptor-binding affinity and potently inhibited human α-CGRP-stimulated cAMP responses. Atogepant exhibited significant affinity for the amylin1 receptor but lacked appreciable affinities for adrenomedullin, calcitonin and other known neurotransmitter receptor targets. Atogepant dose-dependently inhibited facial allodynia in the rat nitroglycerine model and produced significant CIDV inhibition in primates. Brain penetration and behavioral/physical signs during chronic dosing and abrupt withdrawal were minimal in rats. CONCLUSIONS: Atogepant is a competitive antagonist with high affinity, potency and selectivity for the human CGRP receptor. Atogepant demonstrated a potent, concentration-dependent exposure/efficacy relationship between atogepant plasma concentrations and inhibition of CGRP-dependent effects.


Assuntos
Peptídeo Relacionado com Gene de Calcitonina , Piperidinas , Piridinas , Pirróis , Receptores de Peptídeo Relacionado com o Gene de Calcitonina , Compostos de Espiro , Humanos , Ratos , Animais , Peptídeo Relacionado com Gene de Calcitonina/metabolismo , Receptores de Peptídeo Relacionado com o Gene de Calcitonina/metabolismo , Antagonistas do Receptor do Peptídeo Relacionado ao Gene de Calcitonina/farmacologia , Antagonistas do Receptor do Peptídeo Relacionado ao Gene de Calcitonina/uso terapêutico , Hiperalgesia/tratamento farmacológico
2.
Eur J Pharmacol ; 788: 1-11, 2016 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-27288879

RESUMO

Adenosine (ADO) is an important regulatory purine nucleoside that accumulates at sites of inflammation and tissue injury including in diseases associated with renal pathology. Endogenous levels of ADO may be increased by inhibiting the ADO-metabolizing enzyme, ADO kinase (AK). AK inhibitors have demonstrated protection in rodent models of diabetic nephropathy. To further investigate AK inhibition as a potential mechanism for renal protection, A-306989, a potent non-nucleoside AK inhibitor, was examined in both in vitro and in vivo assays of renal injury. A-306989 prevented podocyte damage (disruption of actin cytoskeleton) and increased podocyte survival following puromycin aminonucleoside (PAN) application in both mouse and human conditionally immortalized podocytes. Prophylactic oral administration of A-306989 (1.5, 5 and 15mg/kg) reduced proteinuria in a dose-dependent manner and repressed pro-inflammatory/fibrotic gene up-regulation; A-306989 was also efficacious when administered two days following the PAN-insult. A-306989 (10 and 30mg/kg) also significantly reduced proteinuria and macrophage infiltration in a rat model of glomerulonephritis. Finally, A-306989 (15 and 50mg/kg) reduced the expression levels of pro-inflammatory/fibrotic genes, and reduced macrophage infiltration (50mg/kg), but did not affect the deposition of interstitial collagen in fibrotic kidneys from mice with unilateral ureter obstruction. A-306989 also had beneficial actions on "quality of life" measures including improving body weight loss. Thus, these data indicate that enhancement of endogenous ADO levels by A-306989 can positively modulate renal pathology and mimic some of the previously reported beneficial actions of ADO A2A receptor agonists.


Assuntos
Adenosina Quinase/antagonistas & inibidores , Membrana Basal/diagnóstico por imagem , Citoproteção/efeitos dos fármacos , Rim/citologia , Rim/lesões , Podócitos/efeitos dos fármacos , Inibidores de Proteínas Quinases/farmacologia , Animais , Fibrose , Rim/efeitos dos fármacos , Rim/patologia , Masculino , Camundongos , Podócitos/citologia , Podócitos/metabolismo , Puromicina Aminonucleosídeo/toxicidade , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA